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1 Introduction

In this paper we study minimum cost spanning tree problems (mcstp, for
short). A group of agents (denoted by N), located at different geographical
places, want a particular service which can only be provided by a common
supplier, called the source (denoted by 0). Agents will be served through
connections which involve some cost. However, they do not care whether
they are connected directly or indirectly to the source. This situation is
described by a symmetric matrix C, where ¢;; denotes the connection costs
between ¢ and j (i, € N U{0}).

We assume that agents construct a minimum cost spanning tree (mcst).
The question is how to divide the cost associated with the mcst between the
agents. One of the most important topics is the axiomatic characterization
of rules. The idea is to propose desirable properties and to find out which of
them characterize each rule. Properties often help agents/planner to compare
different rules and to decide which rule is preferred in a particular situation.

In this paper we focus on two monotonicity properties. Population Monotonic-
ity (PM) claiming that if new agents join a "society” no agent from the ”ini-
tial society” can be worse off; and Strong Cost Monotonicity (SCM) which
claims that if a number of connection costs increase and the rest of the con-
nection costs (if any) remain the same, no agent can be better off'. A weaker
version of PM is Separability (SEP), which claims that if two groups of
agents can connect to the source independently of each other, then we can
compute their payments separately.

The main objective of this paper is to study the set of budget-balanced
rules satisfying PM and SC M. We focus on two aspects: to characterize the
set of rules satisfying PM and SC'M and to characterize the set of allocations
induced by these rules.

We identify a necessary and sufficient condition for a family of rules to

cover all the ones satisfying PM and SCM. In order to describe this condi-

!This property is also called Cost Monotonicity and Solidarity in the literature.



tion, we need to define the so-called irreducible matrices, neighborhoods and
extra-costs correspondences.

Given the mcstp given by C', Bird (1976) considers the irreducible matriz
C*. The irreducible matrix is obtained from C' by reducing the cost of the arcs
as much as possible, but without reducing the cost of mcst. A neighborhood
is a group of agents that are closer to each other than to any of the other
agents or to the source. An extra-costs correspondence is a way of dividing
any increase in the connection cost between a neighborhood and the source.

The family of rules that satisfy PM and SCM should satisfy a property
that says, generally speaking, that the aggregate sum given by the extra-
costs correspondence should not decrease when the connection cost between
two consecutive neighborhoods is increased.

This property allows us to identify two important subclasses of rules satis-
fying PM and SC M. These families are the weighted Shapley rules (Bergan-
tinos and Lorenzo-Freire, 2008) and obligation rules (Tijs et al. 2006).

Once we have characterized the rules satisfying PM and SCM, the next
step is to study the set of allocations induced by these rules. Bird (1976)
associates with each mestp C' a cooperative game with transferable utility
(N,vc). We prove that the set of allocations induced by rules satisfying
SCM and PM is the core of the game (N, ve+).

The paper is organized as follows...

2 Notation

Let U = {1,2,3, ...} be the (infinite) set of possible nodes, and let 0 be special
node called the source. A minimum cost spanning tree problem (mcstp) is a
pair (Ny, Cp) where Ny = N U {0}, N C U is finite and Cy = (¢;5)

matrix with ¢;; = 0 and ¢;; = ¢j; for all 7, j € No. A minimum cost connection
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problem (mccp) is a pair (N, C) where N C U is finite and C' = (¢;j), ;o i
a matrix with ¢; = 0 and ¢;; = ¢;; for all ¢,j € N.

For simplicity, when there is no ambiguity, we write Cj instead of (Ny, Cp)



and C' instead of (N, C).

A graph in Ny is a subset of {{i,j} :4,j € Ny,i # j}. The cost of some
graph ¢ is defined as m (g) = Z{m}eg Cij-

Given i,j € Ny, a path between i and j is a graph {{ik,l,ik}}szl such
that ig = i, ix = J and i}, # i whenever k #£ k'. A spanning tree in Ny
is a graph in Ny in which there exists exactly one path between any pair of
nodes. Let G (N) (or simply G) denote the set of all graphs in N and let
T (N) (or simply T) denote the set of all spanning trees in N. Analogously
for G (Ng) (or simply Go) and T (Ny) (or simply Ty).

A minimum cost spanning tree (mcst) in Cy (or in C') is a spanning tree
7 in Ny (or in N) with minimum cost, namely m (7) = miner, m (t) (or
m (1) = minerm (t)). Since ¢;; > 0 for all 4, j, it is not difficult to check
that m (7) = mingeg, m (t) (or m (7) = mingeg m (t)).

A mest is not necessarily unique. However, all mest in Cy (or in C') have
the same cost, that we denote as m (Cy) (or m (C)).

Given S C N, we denote as (5, Cyg) the restriction of (N, Cs) to S, and
we denote as (S, (Cs),) the restriction of (No, Cp) to S.

We denote max C' := max; jen ¢;; and max Cy 1= max; jen, Cij-

Given 7,5 € N, a € R, we denote as al;; the matrix C given by ¢ = 0
for all {k,l} # {i,j} and ¢;; = .

Let Cy be the set of all mestp and let C be the set of all mcep.

Given Cy € Cy, the irreducible matriz of Cy is defined as Cj with

Ci; = max cy
{k,1}€Tij

where 7;; is the (unique) path that connects ¢ and j in some mcst. This
matrix is well-defined, i.e. it does not depend on the chosen mcst.

Denote C; = {C : Cy € Co}. Analogously, C* := {C*: C € C}.

A rule is a function f that assigns to each (Ny, Cy) € Cy a vector f (Ny, Cp) €
RY, such that f; (Ny, Cy) (or f; (Cy) for short), represents the payoff assigned

to node i € N. We are interested in rules satisfying the following properties:
Budget Balance (BB) ..y fi (No, Co) = m (o).
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Strong Cost Monotonicity (SCM) Cy < C) = f(Co) < f(C}) -

Population Monotonicity (PM) 0 # S C N = f; (N, Co) < fi (S0, (Cs),)
for all i € S.

Separability (SEP) 0 # S C N, m (No, Co) =m (S0, (Cs)y)+m ((N\S),, (CN\S)o)
= fi (No, Co) = fi (S0, (Cs),) for all i € S.

It is known (Bergantinos and Vidal-Puga (2007, p. 334)) that PM im-
plies SEP. Moreover, if a rule satisfies SC'M, then it only depends on the
irreducible matrix, i.e. f(Ng,Co) = f(No,C§). This result follows from
Bergantinos and Vidal-Puga (2007, Proposition 3.5).

3 Separability in irreducible matrices

Our first step is to characterize the rules that satisfy SEP and only depend
on the irreducible matrix. Notice that all the rules that satisfy PM and
SCM belong to this family.

3.1 Neighborhoods

Given (Ny, Cy) € Cp and S C N, |S| > 1, we define
Og :=

min = ¢;; — max ¢
1€8,jENo\S {i.5}€7(9)

where 7(S) € T(S) is a mest in S connecting all the nodes in S. Even
though the optimal tree 7 (.5) is not necessarily unique, it is not difficult to
check that maxy; j1e-(s) ¢;; does not depend on the particular 7 (S) and hence
dg is well defined. For S = {i}, we also define d;; := min;eny\ i} Cij-

Roughly speaking, d¢ may be interpreted, when positive, as some kind of
"distance” between S and Ny\S. When this is the case, and |S| > 1, S is
called a neighborhood.

Definition 3.1 Let (N, Cy) be a mest problem. We say that S C N, |S| > 1,
is a neighborhood in Cy if 65 > 0. We denote the set of all neighborhoods in
Co as Ne (Cy).



Example 3.1 Let N = {1,2,3,4,5,6} and cpy = 50, ¢12 = 20, c¢13 = 40,
cza = 10, c15 = 60, c36 = 70 and ¢;; > 70 otherwise. There are exactly
two neighborhoods containing node 1: {1,2} (0q12 = 20) and {1,2,3,4}
(6112343 = 10). Notice that {1,2,3} is not a neighborhood because 61123y =
10 — 40 = —30.

Example 3.2 Let Cj be the irreducible matriz associated to the matriz pre-
sented in the previous example. Hence, cj, = 50, ci3 = 50, cjg = 70, and so

on. In this new matriz, the neighborhoods are the same as before.

Notice that, in general, (C*)g # (Cs)". Take for example N = {1,2, 3},
ci2 =ci13 =1, co3 =2 and S = {2,3}. Then, ¢33 =1 and hence C" = (C*)4
satisfies ¢y = 1 whereas C" = (Cs)" satisfies ¢y = 2.

However, the equality holds when S is a neighborhood, as next Proposi-

tion shows:

Proposition 3.1 S C N is an neighborhood in Cy if and only if S is a
neighborhood in C§. Moreover, (Cs)" = (C*)4 and

ds = min ¢ —maxc;.
1€S5,j€No\S 1,JES

Proof. (=) Assume that S is a neighborhood in Cj. Because of the

definition of the irreducible matrix, we have that min ¢; = min .
1€S5,j€No\S 1€S5,j€No\S

Let 7g € T (S) be a mcest in (S5,Cg). Since S is a neighborhood in Cy, 7g
is also an optimal tree in (S, (Cs)"). Let C* = (Cg)" and let C? = (C*)s.
Given i,j € S, let 7;; C 75 the (unique) path from ¢ to j. Then,

¢, = max cpy =y =C;
{k,l}eTy;

and hence(Cs)" = (C*)s.

Because of the definition of C* we have that max ¢;; = max ¢} =
(izj)eTS ( 7‘7)675
max c;;. Now,
(i)es 7

g = min ¢, — max cj;
i€S,jENo\S {ij}ers

= min  ¢; — max ¢; =0g
1€S5,7€No\S {i,j}eTs



which means that S is an neighborhood in Cj.

(<=) The reciprocal is similar and we omit it. m

Under Proposition 3.1, for each neighborhood S C N, we have (C*)g4 =
(Cs)". We denote this matrix as C%.

Proposition 3.2 If S is a neighborhood in Cy and i € S, then

S=<7€N:c. < min c
J U pesieng\s M

where Cj is the irreducible matriz of Cy.
Proof. "D” Let j € N be such that ¢}; < mingesieny\s ciy- If j ¢ S, then

Ci; = MiNgesieNy\S Cpy» Which is a contradiction. Hence, j € S.

"C”: Let j € N be such that ¢; > mingesien,\s - If j € S, then

0¢ = min ¢, —maxc, <c,—c;=0
keSIENG\S ™ kjes M = TH T

which cannot be true because S is a neighborhood. Hence, j ¢ S. m

Proposition 3.3 If S, S’ are two neighborhoods in C§ € C§ and SNS" # 0,
then either S C S" or S’ C S.

Proof. Let i € SNS'. If mingeg eng\s ¢y < Mingeg jeng\sv ¢y then it follows
from Proposition 3.2 that S C S'. If mingeg jeng\s ¢y < MiNgesieny\s Ciy

then it follows from Proposition 3.2 that S’ C S. =

Corollary 3.1 For eachi € N, there exists a unique family of subsets of N,
Si, Sa, ..., Sq with Q > 0 such? that {Sh, ..., S,} is the set of neighborhoods
that contain i, and S; C Se C ... C S,.

Proof. It follows from Proposition 3.3. m

Lemma 3.1 There exist no neighborhood in Cy if and only if {{i,0}},cn s

a mest in Cy.

2(Case ¢ = 0 covers the situation in which node i has no neighborhoods.
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Proof. (=) Assume {(i,0)},.y is not a mest. Let {k,l} C N be such that

= min ¢;;. Thus, ¢ < min ¢;o. Then, S = {k}U{z €N: max ¢y < ckl}
i,jEN ieN {hd'yerin
is a neighborhood in Cj.
(<=) Assume {(#,0)},.y is a mest. Then, given any S C N, we have

min ¢; = mincp and max ¢; > minc;. Hence
i€5,jENo\S icS {i.7}er(S) ics

g = min Cij — MmMax ¢ <0
i€S5,jENo\S {i.3}er(9)

and S is not a neighborhood. m

3.2 Extra-costs correspondences

An extra-costs correspondence is a function e : C* x Ry — RY satisfying:
o ¢;(C*,z)=0forall (N,C*)eC*,z€R;,i¢ N, and
o > .y (Cra)=uaforall C* € C*, x € R;.

Let e be an extra-costs correspondence. We define the rule f¢ as follows.
Given (Ny, Cy) € Cy,

[iCo)=co— >, (65— ei(C505))
S nciggborhood
31

for all7 e N.
Alternatively,

fE(Co)i=co— > > € (Cs,05)

S neighborhood \ jeS\{i}
EED

Example 3.3 Let C* be the matrix presented in example 3.1 and take 1 = 1.
Hence, ¢}y = 50 and there are two neighborhoods S with i € S: Sy = {1,2}
and Sy = {1,2,3,4}. Moreover, 65, = 20 and ég, = 10.



Let e be defined as e; (C*,x) = vy for all (N,C*) € Cand j € N
(e; (C*,x) = 0 otherwise). Then,

fe(Cy) = 50— ey (03172},20)

- [62 (Of1,273,4}a 10) t+es3 (031,2,374}, 10) t e (Cf1,2,3,4}a 10)}
= 50—10—[2.5+ 2.5+ 2.5] = 32.5.

Proposition 3.4 Any rule f€ satisfies BB.

Proof. Let (Ny, Cy) € Co. Then,

Y F(No,Co) = D co—=d. > (05— ei(C505)

€N 1EN 1€N S neighborhood
S2i
* *
= D = 2 (Z (65 — e (C5, 5s>>>
1EN S neighborhood \i€S
*
= § Cio — § (18] —1)ds.
1EN S neighborhood

Thus, it is enough to prove that for each mestp (N, Cp),

m(Co)+ Y. (SI-1)ds =) _ch
S neighborhood ieN

Assume first there exists no neighborhood. Under Lemma 3.1, {{7, 0} };c .
is a mest in (Ny, Cp). Hence, {{i,0}},cy, is also a mest in (No, C5) and the
result is easily checked.

Assume now that there are exactly k£ > 0 neighborhoods and the result
is true when there exists less than k& neighborhoods. Let S’ be a minimal
neighborhood (there is no neighborhood S such that S & S”). Let 75 denote
a mest in S'. Since S’ is minimal, there exists o > 0 such that ¢;; = o for
all (,7) € 7o

Let t be a mcest in (N, Cp). We define Cj as ¢; = a + dgr if {i,j} C 5

and c}; = ¢;; otherwise. It is not difficult to check that:

e ¢ is also a mest in (Ng, C});



o iy =cjforallie N;

o m (Cp) =m(Cp) + (5] = 1) ds/; and
e {S: S is aneighborhood in C{} = {S : S is a neighborhood in Cy} \ {5} .
Now, applying the induction hypothesis, we have

m (Co) + > (S| - 1) ds

S neighborhood in Cy

= m(Cy) = (191 = 1) b5 + >, (15| =1)ds

S neighborhood in Co

= m(Cy) + > (1S] — 1) ds

S neighborhood in C{
- Y G-Y
ieN ieN
]
Theorem 3.1 The rules f¢ are the only ones that satisfy BB, SEP and

only depend on the irreducible matrix.

Proof. We have just proved that f¢ satisfies BB. Moreover, it is obvious
that it only depends on the irreducible matrix. In order to prove SEP, let
S C N such that m (No, Cy) = m (So, Co)+m ((N\S),,Co). Giveni € S, it is
straightforward to check that Ne (No, Cy) = Ne (So, Co) U Ne ((N\S),, Co).
Hence, ff (No,Co) = ff (S, Co) and this proves that f is separable.

We now prove that if f satisfies BB, SEP and f(Cy) = f(Cf), then
f = f¢ for some extra-costs correspondence e. Let f be such a rule.

Given (N,C*) € C* and a € R, we define (NO,CS(G)> € Cy as the
mestp given by c;‘j(a) = ¢j; forall i,j € N and c;kéa) =aqforalli € N. It is

straightforward to check that i € €2 when a > max C*.
For all C* € C*, z € R, and i € N we define

e (07 0) = J (G ) - g (G 7).

Given i ¢ N we define e; (C*, x) = 0.

We first prove that e is an extra-costs correspondence.

10



e By definition, e; (C*,z) =0 for all (N,C*) € C*, z € R;, i ¢ N.

e Besides,
Zei (C*z) = Zei (C*,x)
iU ieN

— m (Cg(maxc*+z)> —m (Cg(maxC*)>
= m(C") +maxC* +x — m (C*) — max C*

= XT.

Hence, e is an extra-costs correspondence.

We need to prove that f = f¢. We proceed by induction on the number
of neighborhoods Ne (C). Assume |Ne (Cp)| = 0.

Under Lemma 3.1, {(i,0)},.y is a mest in Cp. Since [ satisfies SEP,
fi (Co) = fi {i}y,Co). Under BB, f; (Cy) = cio. Moreover, since {(7,0)},c
is a mest in Cp, we have ¢;o = ¢}, for all i € N and hence f¢(Cy) = f (Cp).

Assume now the result is true for mestp with less than |Ne (Cy)| neigh-
borhoods.

Assume first that maxC* > max cjo- It is not difficult to check that
N is separable, namely, there exists S C N, S # &, and S # N such
that m (No, Co) = m (So, Co) + m ((N\S),,Co). Under SEP, f; (Noy,Cp) =
[i (S0, Cp) for all i € S and f; (No, Co) = fi (N\5),,Co) for all i € N\S.
Repeating this argument we can find a partition {5, ..., S,} of N satisfying
that for each k = 1,..p maxC§ < Iiré%icc;‘o and f; (No, Co) = fi ((Sk)g,Co)
for each i € S},.

Hence, we can assume that max C* < max cjp- Since C* is irreducible,
I}éa]\?ccfo = ¢}, forall i € N. Hence, N € Ne (Cp) and 6y = Ilnez}\;(cfo —max C™.
Since f only depends on the irreducible matrix, f (Cy) = f (C). Now, given
i€ N,

Fi(Co) = £i(C5) = i (G5 N)
— o (C*68) + f (Og(m“0*>) .

11



Let C) = ;™) It is straightforward to check that €% is irreducible.
Moreover, Ne (Cg) = Ne(C}) U{N}. For each S € Ne(C}), ds = dg, and
cio = ¢y — dn. Hence, applying the induction hypothesis, for each i € N,

fi(Co) = e (C",on)+ fi (Cp)
= & (C*on)+cs+ Y (e (C8 05) — )

SeNe(Cy)
= ¢ (C*on)+c—dn+ Y (e(C8 85) — )
SeNe(Cy)
— C’LO + Z 67, 05'755 65)
SeNe(Cy)
= fi ().

4 The main characterization
Given (N',CY) [ (N?,C?) € C, N'NN? =0, and a € Ry, we define
(N'UN? C o, C?)

c; ifi,j € N for some o € {1,2}, and

as the mecep C' given by ¢;; =
Cij = a + max Cct

for all i € N, j € N2.
For convenience, we write C* &, C? @, C? instead of (C* @, C?) @, C3,
and so on.

Given a = (ay, ...,ar), (C*,...,CT), and v < T’ we denote
C7 (a) = C* @y, C* @y, ... B, C7.
Notice that, given v > 1,
C7(a) = C" (a) B, , O, (1)

12



Proposition 4.1 (i) Given (N',C"),(N",C") € C* and a € R, with N' N
N" =0 and a > max C"” — maxC’, then C' ®, C" € C*.

(17) Given a disjoint sequence {(N7, CV)}Ezl cC, T >1,aeRL with
a, > max C7M—max C7 forally =1,....,T—1, and y € [0, as), then C7 (a) €

C* and C7 (') € C* for ally =1,...,T', where a’ = (a; + y,az — y,as, ...,ar).

Proof. (i) Let C' = C" &, C”. Tt is easily checked that a + max C" = max C'.
Hence, we can find a mcst ¢t in C and C* such that ¢t = ' U#* U {(k', k*)}
where t! is mest in O’ t? is a mest in C”, k' € N! and k* € N2, Since
crape = max C' > ¢ for all (i, j) € t' Ut? we can deduce, using the definition
of irreducible matrix, that C' = C*.

(77) We assume vy > 1, since the case v = 1 is trivial. We proceed
by induction on I'. For I = 2, the result follows from (i) because a] =
ai +y > a; > max(C? — maxC'. Assume the result is true for sequences
with less than I' mestp’s, I' > 3. Under the induction hypothesis, we
have C7 (b), C7(V/) € C* where v = 1,...,T' =1, b = (ay,...,ar_1) and
b = (a1 +y,as — y,as,...,ar_1). Now, it is clear that C7 (a) = C7 (b) and
C7(a') = C7 (V) for all v = 1,....,T — 1. Hence, the result holds for any
v < I'. Assume now v =I'. We have

" (a) 2 ™ () @y, O (a) € 07

and
(1) ~r-
CF (a/> = Cl" 1 (a/) @af_l Cl" (CL/) )
In order to apply (i) to this last expression (so that C' (a’) € C*) we have
to prove that

ap_; > maxC' (a') — max C' ! (a) (2)

It is straightforward to check that max C7 (a’) = max C7 (a) for all v # 2,
whereas max C? (') = max C? (a) + y. Hence, for T > 3,

max C" (a') — max C" ! (a) = max C" (a) — maxC" ' (a) < ar_; = a}_,
and for I' = 3,

max C® (a') — max C? (a') = max C® (a) — maxC? (a) —y < ay — y = db.

13
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Figure 1: Minimum cost connection problems C” (a),C" (a') for v = 1,2, 3.

PRO requires the aggregate assignment of extra costs for players 1, 2, 4 and
5 to be not higher with a than with a'.

Definition 4.1 We say that an extra-costs correspondences e satisfies the
property of Proximity (PRO) if for all disjoint sequences {(N7, C’“*)}Sz1 C
C*, T >1,i€ N% withv; # 2, a € RL with a, > maxC"™ — maxC" for
aly=1,..,T' =1, andy € [0,a2] (y > 0 when I' =1), we have

Z e (C7(d),d.) > Z e; (C7 (a), ay)

where @’ = (a1 +y,as — y, az, ...,ar) (' = (a3 +y) when T =1).

Example 4.1 LetT' =3, N!' = {1,2} ¢}, = 10, N*> = {3}, N3 = {4,5} and
s = 0. Then, a = (25,15,20) and a’ = (25 + y, 15 — y, 20) with y € [0, 15]
satisfy the conditions imposed on the definition of PRO: a1 =25 > 0—10 =
max C? — maxC?, a; = 15> 0 — 0 = maxC® — maxC?. C7 (a) and C" (d')

are described in Figure 1.

Let P be the set of all rules f¢ such that e satisfies PRO.
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Theorem 4.1 Let f be a rule. Then, f satisfies BB, SCM and PM if and
only if f € P.

Proof. We already now (by Proposition 3.4) that any f € P satisfies BB.

We now prove that if f € ]3, then f satisfies SCM and PM. Assume
that f = f¢ where e satisfies PRO.

Let C)’ denote the subset of mcstp whose set of nodes is N.

Following Tijs, Moretti, Branzei and Norde (2004), we define the set Xy,
of linear orders on the arcs of Cy as the set of all bijections o : {1,..., ("*") } —
{{i,7} :i,7 € No}. For each mestp (Ny, Cy), there exists at least one linear
order o € Xy, such that c,;1) < ;0 < ... < Co_((nil)). For any o € Yy, we
define the set

K = {Co S Cév D Co(k) < Co(kt1) forall kK =1,2, } )

which we call the Kruskal cone with respect to 0. One can easily see that
UanNO Ko =¢}.

We say that a nonempty set S C N is a quasi-neighborhood in Cjy if
ds > 0. Let ¢gNe(Cp) = {S T N,S#0:05 >0} denote the set of quasi-
neighborhoods in Cj. Clearly, Ne (Cy) C gNe (Cp).

We now prove that f satisfies SC M. It is enough to prove that f (Ny, Cp) <
f (No, Cp) when there exists {k,l} C Ny such that ¢}, > ¢} and ¢}; = ¢;; oth-
erwise. Let (k,1), Cy and C} be defined in this way.

For any ¢ € [0, 1], the mcstp (No, Cf) defined as cj; = (1 —t)ci; + tcj;
satisfies ¢;; > ¢}, > ¢ and ¢; = ¢;; otherwise. Since Xy, is a finite set, there
exist a sequence {t!,#?,...t¢} C [0,1] with #' = 0 and ” = 1 such that, for all
r, we have t” < t"*! and C*" and C*""" belong to the same Kruskal cone.

Hence, it is enough to prove that f (Ny, Co) < f (No, Cj) when both Cy
and C{, belong to the same Kruskal cone. An immediate consequence is that
there exists a common mcst t in both Cy and Cj.

By definition of f, it is obvious that f (No,Co) = f (N, Cg). Hence, if
{k,1} ¢ t, then C§ = Cf and thus

f (No, Co) = f (No, Cg) = f (No, C") = f (No, Cp) -
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Hence, we assume {k,l} € t. This implies ¢y = ¢}, and ¢}; = ¢;. Let
a=cy—cy>0.

Another consequence of Cy, C|) being in the same Kruskal cone is that, for
any S C N, |S| > 1, there exist i',:2, j2 € S, j! € No\S with {i?, j°} € 7(9)
such that

0g = min ¢y — Mmax  Cpy = Cpji — Cpzj2 and
i'€S,j'€No\S {i".3'yer(S)
!/ . / / / /
0g = min - Gy —  MAX Gy = Cua — Cppje.

7eSJENNS T {irjirer(s) 'Y

Thus dg and s cannot have opposite sign. Namely, dg > 0 implies §5 > 0.

From this, it is straightforward to check that Ne (Cy) C ¢Ne (C}) and,
analogously, Ne (C])) C gNe (Cy).

Given any X C 2V with Ne (Cp) C X C gNe(Cy), we have

fi(No,Co) =iy — Y (65 — € (C5,05)) (3)

SeX:83i
for all i € N. The reason is that for any S € gNe (Cy) \Ne (Cy), ds = 0 and
hence 65 —e; (C%,6s) =0 —¢; (C§,0) = 0.
We define X = Ne (Cy) U Ne(C}). Clearly, Ne(Cp) € X C gNe (Cp)
and Ne (C}) C X C gNe(CY)).
Fix i € N. We need to prove that f; (No, Cy) < fi (No, Cf). Under (3),

we have

fi(No,Co) = cio— D (05— (C5,9))

SeX:S5i
[i(No,CY) = o= Y (85— (C5,0%)) .
SeX:S53i

We have seen above that
! / /
55’ = Ci1j1 — Cj252 and 65 = Ci1j1 - Ci2j2

for some i',i?, j2 € S, j1 € Np\S with {i?, j?} € tg.
By hypothesis, c;;» = ¢}, for all {j,j'} # {k,l}. Hence, 05 = g unless

{i', g = {k. 1} or {2%, 57} = {k.1}.

Given S € X and dg # 0y we study both cases:
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1. If {i*,j'} = {k,I}, then &y = ds + a. Moreover, there can be at
most two such S. One of them contains node k (if any) and the other

contains node ! (if any). Assume, on the contrary, that there exist two
S'e X, S # 5 with k € SNS’ (the case for [ € S is analogous). Hence,

A L : Ik : /%
i'€S,j'€No\S €S’ j'eNg\ S’
Since k£ € S NS, under Corollary 3.1, S & S or S” & S. Assume
w.lo.g. S &S Then,
/% . /% . /%
Ch = min - ¢y < min - G
i'€8,5'€No\S i'€S,5/€S\S

/ . / /
< max ¢, < min Cirir = Chy
iljles ' T yesl jrleNo\s

which implies that no inequality is strict. In particular, max, cgi‘j, = ).
il j'e

Since {k,l} ¢ S’, max ¢}, = max ¢, and hence
il j'es’ J il j'es’ J

d¢y = min ¢y, — max ¢, =cy— chy=—a <0,
€S’ j'eNo\S' T ilgest

which is a contradiction.

2. If {i?, j2} = {k,l}, then &y = s — a. Moreover, there can be at most
one such S. Assume, on the contrary, that there exists S’ € X, S #£ 5,
k,le SNS’, and
Since £ € SN S’ under Corollary 3.1, S ¢ S" or S" & S. Assume
w.lo.g. S &S Then,

* * : * : * * %k
Cp = Max ¢y < min - ¢y < min - i < i;g/zgg Cirjr = Ciy

/ —_—
irj'es “J i'€S,j'eNg\S 7 i'€S,j'€S\S
which implies that no inequality is strict. Thus, min ¢}, = ¢},
i'€S,j'ENo\S 7
and hence

d¢= min ¢y, — max c,, =c;,; —c,; =0
veSjleNo\s I irjres T4 TRL TR T

which implies §'y = 65 — a = —a < 0, which is a contradiction.
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Let S* = {j € No: ¢y <} andlet S' = {j € Ny : ¢f; < ¢} Both S
and S’ are nonempty (because k& € S* and | € S') and disjoint (it follows
from {k,l} € t). Since they are disjoint, we can assume w.l.o.g. 0 ¢ S*. Let
Sy = Sk If |S;| > 1, then

[ ¢ S,
= min ¢y,
i/€S1,j/€N0\S1
! /% /%
= ¢, — max c,., >0
S1 kl ies Vi

and hence either S; € Ne (C{) or Sy = {k}.

Assume that S; € Ne(Cf). Since Cy and Cj are in the same Kruskal
cone, ds, = Ciiy — Chjp and 0 = cfi — . Since d > 0 we deduce
that dg, > 0. Hence S; € gNe (Cp) . Now, it is not difficult to check that S;
satisfies condition 1, hence 0, = dg, + a when [S;| > 1.

Let Sy = {j € No:cpy < czl}. Clearly, {k,l} C S,. Notice that if 0 € Sy
then Sy ¢ X. It is straightforward to check that if 0 ¢ Sy then S, € X.
Besides 57 & S; and there isno S € X, § # 51, such that S; & S & 5.

In case 0 ¢ Ss, it is not difficult to check that Sy satisfies condition 2,
hence &, = dg, — .

Let F ={S € Ne(Cp): 51 CS,0s =0dg}andlet F' = {S € Ne(C}): S, CS,ds=0q}
It is not difficult to check that ' = F' (F = F' = () is also possible) and,
moreover, S1, Se ¢ F. By Proposition 3.3 we can assume F' = {S3, Sy, ..., St}
for some I' > 2 (I' =2 when F'=0) and S, & S,4q forally =3,....,T — 1.

Let G = {S € X : 5 C S}. Clearly, either G = {54, ..., Sr} (when S; €
Ne(Cp)) or G = {95, ..., Sr} (when Sy = {k}). Moreover, S, & S, for all
v=1,2,... —1.

If i ¢ Sr, it is straightforward to check that f; (Ny, Co) = fi (No, C}).

Hence, we assume ¢ € S, for some v € {1,...,I'}. Let ; be the minimum
of these v’s.

We have two cases:

Case 1: I' = 1. This means Sy ¢ X. Since dg, > 0, we have 0 € Sy,

. . . * * /% /%
which implies ¢j, < ¢; and also ¢y < ¢}.

18



Subcase 1.1: S; = {k} = {i}. This implies X = () and hence
fi (No, Cg) = fi (No, Co) = ¢ — cjp > 0.

Subcase 1.2: §; € X. This implies ¢} > ¢}, and hence ¢y = ¢f;. This

/
7

implies ¢}y — ¢j; = a. Moreover, (s = Cg . Hence,

fi (No, Cg) — fi (No, Co)

= dy— (0%, — e (C5.,05,)) —cio+ (0s, — € (C%,0s,))

= df—chy— (551 +a—eg (C’gl,&gl + a)) + (551 — € (C§17551))

= ¢ (C8,, 05 + ) —e; (CE,0s,) >0
where the last inequality comes from applying PRO to {(Sl, C’gl)} with
I'=1,a, =g, and y = a.

Case 2: T' > 1. This means S, € X and hence 0 ¢ S'. Thus we can take

S; = S* or S; = St Tt is not difficult to check that Sy, = SFU S Ifi € S,
we choose S; such that ¢ € Sy. Thus, v, # 2. This implies cjy = cf,.

In this case,

fi (No, Cg) — fi (No, Co)

dh—co— Y (0 —0s—e; (CF,0) +e; (CF,85)) -
SeX:531

For any S € X\G with i € S, we have C§ = C¢, which also implies

ds = 0's. Hence,

fi (No, Cg) — fi (No, Co)

= i (—51% +ds, + € (ngaéi%) — G (Cgv’ 557))

Y=
= i e (Ci 0% ) - i ei (Ci,,05,) - i (9., .,
Y=Y T=Yi T=Yi

The last term is zero, because g, = g, +, 05, = d5, —a, and 0y = dg,

otherwise (remark that ~, # 2). Hence,

fi (NOvC(I)) — fi (No, Co) = i (€i (Cg:,élsv)) - i <€i (CEV,(SsW)) .
V=5 Y=
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We now define {(N7, CV)}EZ17 a € RL andy € [0, as] so that e; (ng, gﬂ)
e; (C7(d'),d.) and e; <C’§7, 557> =¢; (C7 (a),ay) for all 4. Under PRO, this

will prove that the above expression is nonnegative.

Let N' = Sy, C' = C%., and a; = 0g,. In general, for any v = 2,..., T,
N7 = S\S,-1, C7 = (C*) 5+, and a, = dg,. We also define y = a. Since
¢ = ¢+ a, it is straightforward to check that av < ay and hence y € [0, as].

Clearly, C¢ = C'. Now, we prove that C'§ = C! @®,,1. C* = C* (). Let
C* = C§ and CP = C @,,14 C?. Clearly, C* = (Cs, + al)".

It is straightforward to check that ¢f; = cfj for all 3,57 € N! and all
i,7 € N2 Let k' € N! and k* € N2. Then,

cglk2 = maxC!+a; + o = maxC* + 0g, +a= mir% cij +
iEN
jE]%o\Nl
= Cp+ o= Cliye.

Analogously, C¢, = (Cs, + aly)” = (C" @qy4a C?)Bay—aC® = C? (/) . In
general, 'y = (C’S7 + a[kl)* = C @0 +0C?®y—a C* @y ... B, ,C7 = C7 (d)
forall vy =3,...,T.

Similarly, we can prove that Cg = C” (a) forally=1,...,T.

Hence, by applying PRO, we have

fi (No, Cg) — fi (No, Co) > 0.

We now prove that f satisfies PM. By Theorem 3.1, we know that f
satisfies SEP. We must prove that for each mestp (Ng,Cy) and j € N,
fi (No, Co) < fi ((N\{j}),,Co) for all i € N\ {j}. Let (No,C}) be defined
as ¢ = ¢y for all 4,i" € N\ {j} and ¢}; = max Cp,\(; for all i € No\ {j}.
Clearly, m (No,Cy) = m ((N\{j})y,Ch) + m({j},,C) and hence, under
SEP, fi (No,Ch) = fi (N\ {j})g C) for all i € N\ {j}. Given i € N\ {5},
under SCM,

fi (No, Co) < fi (No, Co) = fi (N\{})g. C) = fi (N\{j})g,Co)-
We now prove that if f satisfies BB, SCM and PM, then f € P.
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We define e as in the proof of Theorem 3.1. Namely, for all C* € C*,
reR,,andi € N,

e (Cha) = i (G ) — g (G D).

and e; (C*,z) = 0 for all i ¢ N. We already proved (proof of Theorem
3.1) that e is an extra-cost correspondence and f = f°.

Hence, we only need to check that e satisfies PRO. Let {(N7, CV)}Ezl C
C* be a disjoint sequence with I' > 1, i € N7 with v, # 2, a € RE with
a, > maxC" —maxC? for all v = 1,...,I' — 1 and y € [0, az] (or simply
y >0, when I =1).

Assume first I' = 1. We need to prove

€i (Cl,CLl + y) — € (Cl,al) > 0.
Let C = C'. By definition,
e; (Coa1 +vy) — e (C,a1)
= () g (G ) = (G ) £ (G )
= fl (Cg(max()*—&—al—f—y)) . fz (Og(maxC*—&-m)) >0

where the last inequality comes from the fact that ;"¢ Fortv) > cumaxCrar)

and f satisfy SC'M.

Assume now I' > 1. We need to prove

Z e (C7(d'),d) — Z e; (C7 (a),ay) >0

where o’ = (a; + ¥y, as — ¥y, as, ...,ar) and C7 (b) = C! @y, C% By, ... ®p,_, C7
forally=1,...,T and all b € RL.
By definition,

ei (C*,x) = fi (C" @, ({0},0)) — fi (C* &0 ({0},0)).
Under SEP, it is straightforward to check that
Ji (C7 (b) @0 ({0},0)) = £i (C"" (b) @o,, ({0},0))

21



forall y =+, +1,...,T and all b € RL. Now,

Ma

¢ (C7(d),d))

2
Il

Yi

N

[fz (C’Y (a/) @ag ({O} ’ 0)) - fz (C’Y (a/) Do ({0} 70))]

= [ (CT (@) @a, ({0},0)) — £ (C (o) @0 ({0} ,0))
and
S e (C7 (a),ay)
= 3 [£(C7 (@) &, ({0},0)) — £:(C7 () &0 ({0}, 0))]
= £ (C" (a) ®ur ({0}.0)) — £ (C7 (a) o ({0}, 0)).
Hence,
Zez CW Zel (C7 (a),ay)

= fi (0%' (a) @0 ({0},0)) — fz- (C™ (a’) o ({0} ,0))
+fi (C" () Bay, ({0},0)) = f; (CT (a) @ ({0},0))

Under SCM, f; (CT (') @y, ({0},0)) > f; (CT (a') by, ({0} ,0)).

We now prove that f; (C7i (a) ©o ({0},0)) = fi (C7i (a') &0 ({0},0)). For
v, = 1, C'(a) = C*(a’) = C* and the result holds trivially. Assume v, >
2. Then, N'U...U N%~1 and N7 are two separable components in both
C7 (a) ®o ({0},0) and C7i (a') &g ({0},0). Moreover, the restriction of C*
to N7 coincides in both mecstp. Under SE P, we obtain the result.

Hence,
S (€ (@),a) = el (@),a,) 2 0.
[ ]
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