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1 Introduction

In this paper we study minimum cost spanning tree problems (mcstp, for

short). A group of agents (denoted by N), located at di¤erent geographical

places, want a particular service which can only be provided by a common

supplier, called the source (denoted by 0). Agents will be served through

connections which involve some cost. However, they do not care whether

they are connected directly or indirectly to the source. This situation is

described by a symmetric matrix C, where cij denotes the connection costs

between i and j (i; j 2 N [ f0g).
We assume that agents construct a minimum cost spanning tree (mcst):

The question is how to divide the cost associated with the mcst between the

agents. One of the most important topics is the axiomatic characterization

of rules. The idea is to propose desirable properties and to �nd out which of

them characterize each rule. Properties often help agents/planner to compare

di¤erent rules and to decide which rule is preferred in a particular situation.

In this paper we focus on two monotonicity properties. PopulationMonotonic-

ity (PM) claiming that if new agents join a �society�no agent from the �ini-

tial society�can be worse o¤; and Strong Cost Monotonicity (SCM) which

claims that if a number of connection costs increase and the rest of the con-

nection costs (if any) remain the same, no agent can be better o¤1. A weaker

version of PM is Separability (SEP ), which claims that if two groups of

agents can connect to the source independently of each other, then we can

compute their payments separately.

The main objective of this paper is to study the set of budget-balanced

rules satisfying PM and SCM:We focus on two aspects: to characterize the

set of rules satisfying PM and SCM and to characterize the set of allocations

induced by these rules.

We identify a necessary and su¢ cient condition for a family of rules to

cover all the ones satisfying PM and SCM . In order to describe this condi-

1This property is also called Cost Monotonicity and Solidarity in the literature.
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tion, we need to de�ne the so-called irreducible matrices, neighborhoods and

extra-costs correspondences.

Given the mcstp given by C, Bird (1976) considers the irreducible matrix

C�. The irreducible matrix is obtained fromC by reducing the cost of the arcs

as much as possible, but without reducing the cost of mcst. A neighborhood

is a group of agents that are closer to each other than to any of the other

agents or to the source. An extra-costs correspondence is a way of dividing

any increase in the connection cost between a neighborhood and the source.

The family of rules that satisfy PM and SCM should satisfy a property

that says, generally speaking, that the aggregate sum given by the extra-

costs correspondence should not decrease when the connection cost between

two consecutive neighborhoods is increased.

This property allows us to identify two important subclasses of rules satis-

fying PM and SCM . These families are the weighted Shapley rules (Bergan-

tiños and Lorenzo-Freire, 2008) and obligation rules (Tijs et al. 2006).

Once we have characterized the rules satisfying PM and SCM , the next

step is to study the set of allocations induced by these rules. Bird (1976)

associates with each mcstp C a cooperative game with transferable utility

(N; vC). We prove that the set of allocations induced by rules satisfying

SCM and PM is the core of the game (N; vC�).

The paper is organized as follows...

2 Notation

Let U = f1; 2; 3; :::g be the (in�nite) set of possible nodes, and let 0 be special
node called the source. A minimum cost spanning tree problem (mcstp) is a

pair (N0; C0) where N0 = N [ f0g, N � U is �nite and C0 = (cij)i;j2N0 is a
matrix with cii = 0 and cij = cji for all i; j 2 N0. Aminimum cost connection
problem (mccp) is a pair (N;C) where N � U is �nite and C = (cij)i;j2N is
a matrix with cii = 0 and cij = cji for all i; j 2 N .
For simplicity, when there is no ambiguity, we write C0 instead of (N0; C0)
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and C instead of (N;C).

A graph in N0 is a subset of ffi; jg : i; j 2 N0; i 6= jg. The cost of some
graph g is de�ned as m (g) =

P
fi;jg2g cij:

Given i; j 2 N0, a path between i and j is a graph ffik�1; ikggKk=1 such
that i0 = i, iK = j and ik 6= ik0 whenever k 6= k0. A spanning tree in N0
is a graph in N0 in which there exists exactly one path between any pair of

nodes. Let G (N) (or simply G) denote the set of all graphs in N and let

T (N) (or simply T) denote the set of all spanning trees in N . Analogously
for G (N0) (or simply G0) and T (N0) (or simply T0).
A minimum cost spanning tree (mcst) in C0 (or in C) is a spanning tree

� in N0 (or in N) with minimum cost, namely m (�) = mint2T0m (t) (or

m (�) = mint2Tm (t)). Since cij � 0 for all i; j, it is not di¢ cult to check

that m (�) = ming2G0m (t) (or m (�) = mint2Gm (t)).

A mcst is not necessarily unique. However, all mcst in C0 (or in C) have

the same cost, that we denote as m (C0) (or m (C)).

Given S � N , we denote as (S;CS) the restriction of (N;CS) to S, and
we denote as (S0; (CS)0) the restriction of (N0; C0) to S.

We denote maxC := maxi;j2N cij and maxC0 := maxi;j2N0 cij.

Given i; j 2 N , � 2 R+, we denote as �Iij the matrix C given by ckl = 0
for all fk; lg 6= fi; jg and cij = �.
Let C0 be the set of all mcstp and let C be the set of all mccp.
Given C0 2 C0, the irreducible matrix of C0 is de�ned as C�0 with

c�ij = max
fk;lg2� ij

ckl

where � ij is the (unique) path that connects i and j in some mcst. This

matrix is well-de�ned, i.e. it does not depend on the chosen mcst.

Denote C�0 = fC�0 : C0 2 C0g. Analogously, C� := fC� : C 2 Cg.
A rule is a function f that assigns to each (N0; C0) 2 C0 a vector f (N0; C0) 2

RN , such that fi (N0; C0) (or fi (C0) for short), represents the payo¤assigned
to node i 2 N . We are interested in rules satisfying the following properties:

Budget Balance (BB)
P

i2N fi (N0; C0) = m (C0) :
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Strong Cost Monotonicity (SCM) C0 � C 00 =) f (C0) � f (C 00) :

Population Monotonicity (PM) ; 6= S � N =) fi (N0; C0) � fi (S0; (CS)0)
for all i 2 S.

Separability (SEP ) ; 6= S � N ,m (N0; C0) = m (S0; (CS)0)+m
�
(NnS)0 ;

�
CNnS

�
0

�
=) fi (N0; C0) = fi (S0; (CS)0) for all i 2 S.

It is known (Bergantiños and Vidal-Puga (2007, p. 334)) that PM im-

plies SEP . Moreover, if a rule satis�es SCM , then it only depends on the

irreducible matrix, i.e. f (N0; C0) = f (N0; C
�
0). This result follows from

Bergantiños and Vidal-Puga (2007, Proposition 3.5).

3 Separability in irreducible matrices

Our �rst step is to characterize the rules that satisfy SEP and only depend

on the irreducible matrix. Notice that all the rules that satisfy PM and

SCM belong to this family.

3.1 Neighborhoods

Given (N0; C0) 2 C0 and S � N , jSj > 1, we de�ne

�S := min
i2S;j2N0nS

cij � max
fi;jg2�(S)

cij

where � (S) 2 T (S) is a mcst in S connecting all the nodes in S. Even
though the optimal tree � (S) is not necessarily unique, it is not di¢ cult to

check that maxfi;jg2�(S) cij does not depend on the particular � (S) and hence

�S is well de�ned. For S = fig, we also de�ne �fig := minj2N0nfig cij.
Roughly speaking, �S may be interpreted, when positive, as some kind of

�distance�between S and N0nS. When this is the case, and jSj > 1, S is

called a neighborhood.

De�nition 3.1 Let (N;C0) be amcst problem. We say that S � N , jSj > 1,
is a neighborhood in C0 if �S > 0. We denote the set of all neighborhoods in

C0 as Ne (C0).
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Example 3.1 Let N = f1; 2; 3; 4; 5; 6g and c01 = 50, c12 = 20, c13 = 40,

c34 = 10, c15 = 60, c36 = 70 and cij > 70 otherwise. There are exactly

two neighborhoods containing node 1: f1; 2g (�f1;2g = 20) and f1; 2; 3; 4g
(�f1;2;3;4g = 10). Notice that f1; 2; 3g is not a neighborhood because �f1;2;3g =
10� 40 = �30.

Example 3.2 Let C�0 be the irreducible matrix associated to the matrix pre-

sented in the previous example. Hence, c�02 = 50, c
�
03 = 50, c

�
16 = 70, and so

on. In this new matrix, the neighborhoods are the same as before.

Notice that, in general, (C�)S 6= (CS)
�. Take for example N = f1; 2; 3g,

c12 = c13 = 1, c23 = 2 and S = f2; 3g. Then, c�23 = 1 and hence C 0 = (C�)S
satis�es c023 = 1 whereas C

00 = (CS)
� satis�es c0023 = 2:

However, the equality holds when S is a neighborhood, as next Proposi-

tion shows:

Proposition 3.1 S � N is an neighborhood in C0 if and only if S is a

neighborhood in C�0 . Moreover, (CS)
� = (C�)S and

�S = min
i2S;j2N0nS

c�ij �max
i;j2S

c�ij:

Proof. (=)) Assume that S is a neighborhood in C0. Because of the

de�nition of the irreducible matrix, we have that min
i2S;j2N0nS

cij = min
i2S;j2N0nS

c�ij.

Let �S 2 T (S) be a mcst in (S;CS). Since S is a neighborhood in C0, �S
is also an optimal tree in (S; (CS)

�). Let C1 = (CS)
� and let C2 = (C�)S.

Given i; j 2 S, let � ij � �S the (unique) path from i to j. Then,

c1ij = max
fk;lg2� ij

ckl = c
�
kl = c

2
ij

and hence(CS)
� = (C�)S.

Because of the de�nition of C� we have that max
(i;j)2�S

cij = max
(i;j)2�S

c�ij =

max
(i;j)2S

c�ij. Now,

��S = min
i2S;j2N0nS

c�ij � max
fi;jg2�S

c�ij

= min
i2S;j2N0nS

cij � max
fi;jg2�S

cij = �S
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which means that S is an neighborhood in C�0 .

((=) The reciprocal is similar and we omit it.
Under Proposition 3.1, for each neighborhood S � N , we have (C�)S =

(CS)
�. We denote this matrix as C�S.

Proposition 3.2 If S is a neighborhood in C0 and i 2 S, then

S =

�
j 2 N : c�ij < min

k2S;l2N0nS
c�kl

�
where C�0 is the irreducible matrix of C0.

Proof. ���Let j 2 N be such that c�ij < mink2S;l2N0nS c
�
kl. If j =2 S, then

c�ij � mink2S;l2N0nS c�kl, which is a contradiction. Hence, j 2 S.
���: Let j 2 N be such that c�ij � mink2S;l2N0nS c�kl. If j 2 S, then

�S = min
k2S;l2N0nS

c�kl �max
k;l2S

c�kl � c�ij � c�ij = 0

which cannot be true because S is a neighborhood. Hence, j =2 S:

Proposition 3.3 If S; S 0 are two neighborhoods in C�0 2 C�0 and S \ S 0 6= ;,
then either S � S 0 or S 0 � S.

Proof. Let i 2 S\S 0. If mink2S;l2N0nS c�kl � mink2S0;l2N0nS0 c�kl then it follows
from Proposition 3.2 that S � S 0. If mink2S0;l2N0nS0 c

�
kl � mink2S;l2N0nS c

�
kl

then it follows from Proposition 3.2 that S 0 � S.

Corollary 3.1 For each i 2 N , there exists a unique family of subsets of N ,
S1; S2; :::; SQ with Q � 0 such2 that fS1; :::; Sqg is the set of neighborhoods
that contain i, and S1 � S2 � ::: � Sq.

Proof. It follows from Proposition 3.3.

Lemma 3.1 There exist no neighborhood in C0 if and only if ffi; 0ggi2N is
a mcst in C0.

2Case q = 0 covers the situation in which node i has no neighborhoods.
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Proof. (=)) Assume f(i; 0)gi2N is not a mcst. Let fk; lg � N be such that

ckl = min
i;j2N

cij: Thus, ckl < min
i2N

ci0. Then, S = fkg[
�
i 2 N : max

fj;j0g2� ik
cjj0 � ckl

�
is a neighborhood in C0.

((=) Assume f(i; 0)gi2N is a mcst. Then, given any S � N , we have

min
i2S;j2N0nS

cij = min
i2S

ci0 and max
fi;jg2�(S)

cij � min
i2S

ci0. Hence

�S = min
i2S;j2N0nS

cij � max
fi;jg2�(S)

cij � 0

and S is not a neighborhood.

3.2 Extra-costs correspondences

An extra-costs correspondence is a function e : C� � R+ ! RU+ satisfying:

� ei (C�; x) = 0 for all (N;C�) 2 C�, x 2 R+, i =2 N , and

�
P

i2U ei (C
�; x) = x for all C� 2 C�, x 2 R+.

Let e be an extra-costs correspondence. We de�ne the rule f e as follows.

Given (N0; C0) 2 C0,

f ei (C0) := c
�
i0 �

X
S neighborhood

S3i

(�S � ei (C�S; �S))

for all i 2 N .
Alternatively,

f ei (C0) := c
�
i0 �

X
S neighborhood

S3i

0@ X
j2Snfig

ej (C
�
S; �S)

1A :
Example 3.3 Let C� be the matrix presented in example 3.1 and take i = 1.

Hence, c�i0 = 50 and there are two neighborhoods S with i 2 S: S1 = f1; 2g
and S2 = f1; 2; 3; 4g. Moreover, �S1 = 20 and �S2 = 10.
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Let e be de�ned as ej (C�; x) = x
jN j for all (N;C

�) 2 C and j 2 N

(ej (C�; x) = 0 otherwise). Then,

f e1 (C0) = 50� e2
�
C�f1;2g; 20

�
�
�
e2
�
C�f1;2;3;4g; 10

�
+ e3

�
C�f1;2;3;4g; 10

�
+ e4

�
C�f1;2;3;4g; 10

��
= 50� 10� [2:5 + 2:5 + 2:5] = 32:5:

Proposition 3.4 Any rule f e satis�es BB.

Proof. Let (N0; C0) 2 C0. Then,X
i2N

f ei (N0; C0) =
X
i2N

c�i0 �
X
i2N

X
S neighborhood

S3i

(�S � ei (C�S; �S))

=
X
i2N

c�i0 �
X

S neighborhood

 X
i2S
(�S � ei (C�S; �S))

!
=

X
i2N

c�i0 �
X

S neighborhood

(jSj � 1) �S:

Thus, it is enough to prove that for each mcstp (N0; C0),

m (C0) +
X

S neighborhood

(jSj � 1) �S =
X
i2N

c�i0:

Assume �rst there exists no neighborhood. Under Lemma 3.1, ffi; 0ggi2N0
is a mcst in (N0; C0). Hence, ffi; 0ggi2N0 is also a mcst in (N0; C

�
0) and the

result is easily checked.

Assume now that there are exactly k > 0 neighborhoods and the result

is true when there exists less than k neighborhoods. Let S 0 be a minimal

neighborhood (there is no neighborhood S such that S  S 0). Let �S0 denote
a mcst in S 0. Since S 0 is minimal, there exists � � 0 such that cij = � for
all (i; j) 2 �S0.
Let t be a mcst in (N0; C0). We de�ne C 00 as c

0
ij = � + �S0 if fi; jg � S 0

and c0ij = cij otherwise. It is not di¢ cult to check that:

� t is also a mcst in (N0; C 00);
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� c0�i0 = c�i0 for all i 2 N ;

� m (C 00) = m (C 00) + (jS 0j � 1) �S0; and

� fS : S is a neighborhood in C 00g= fS : S is a neighborhood in C0g n fS 0g :

Now, applying the induction hypothesis, we have

m (C0) +
X

S neighborhood in C0

(jSj � 1) �S

= m (C 00)� (jS 0j � 1) �S0 +
X

S neighborhood in C0

(jSj � 1) �S

= m (C 00) +
X

S neighborhood in C00

(jSj � 1) �S

=
X
i2N

c0�i0 =
X
i2N

c�i0:

Theorem 3.1 The rules f e are the only ones that satisfy BB, SEP and

only depend on the irreducible matrix.

Proof. We have just proved that f e satis�es BB. Moreover, it is obvious

that it only depends on the irreducible matrix. In order to prove SEP , let

S � N such thatm (N0; C0) = m (S0; C0)+m ((NnS)0 ; C0). Given i 2 S, it is
straightforward to check that Ne (N0; C0) = Ne (S0; C0) [Ne ((NnS)0 ; C0).
Hence, f ei (N0; C0) = f

e
i (S0; C0) and this proves that f is separable.

We now prove that if f satis�es BB, SEP and f (C0) = f (C�0), then

f = f e for some extra-costs correspondence e. Let f be such a rule.

Given (N;C�) 2 C� and a 2 R+, we de�ne
�
N0; C

�(a)
0

�
2 C0 as the

mcstp given by c�(a)ij = c�ij for all i; j 2 N and c�(a)i0 = a for all i 2 N . It is
straightforward to check that C�(a)0 2 C�0 when a � maxC�.
For all C� 2 C�, x 2 R+, and i 2 N we de�ne

ei (C
�; x) = fi

�
C
�(maxC�+x)
0

�
� fi

�
C
�(maxC�)
0

�
:

Given i =2 N we de�ne ei (C�; x) = 0.

We �rst prove that e is an extra-costs correspondence.
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� By de�nition, ei (C�; x) = 0 for all (N;C�) 2 C�, x 2 R+, i =2 N .

� Besides,X
i2U

ei (C
�; x) =

X
i2N

ei (C
�; x)

= m
�
C
�(maxC�+x)
0

�
�m

�
C
�(maxC�)
0

�
= m (C�) + maxC� + x�m (C�)�maxC�

= x:

Hence, e is an extra-costs correspondence.

We need to prove that f = f e. We proceed by induction on the number

of neighborhoods Ne (C0). Assume jNe (C0)j = 0.
Under Lemma 3.1, f(i; 0)gi2N is a mcst in C0. Since f satis�es SEP ,

fi (C0) = fi (fig0 ; C0). Under BB, fi (C0) = ci0. Moreover, since f(i; 0)gi2N
is a mcst in C0, we have ci0 = c�i0 for all i 2 N and hence f e (C0) = f (C0).

Assume now the result is true for mcstp with less than jNe (C0)j neigh-
borhoods.

Assume �rst that maxC� � max
i2N

c�i0: It is not di¢ cult to check that

N is separable, namely, there exists S � N; S 6= ?; and S 6= N such

that m (N0; C0) = m (S0; C0) +m ((NnS)0 ; C0). Under SEP , fi (N0; C0) =
fi (S0; C0) for all i 2 S and fi (N0; C0) = fi ((NnS)0 ; C0) for all i 2 NnS.
Repeating this argument we can �nd a partition fS1; :::; Spg of N satisfying

that for each k = 1; :::p maxC�Sk < maxi2Sk
c�i0 and fi (N0; C0) = fi ((Sk)0 ; C0)

for each i 2 Sk.
Hence, we can assume that maxC� < max

i2N
c�i0. Since C

� is irreducible,

max
i2N

c�i0 = c
�
i0 for all i 2 N . Hence, N 2 Ne (C0) and �N = max

i2N
c�i0�maxC�.

Since f only depends on the irreducible matrix, f (C0) = f (C�0). Now, given

i 2 N ,

fi (C0) = fi (C
�
0) = fi

�
C
�(maxC�+�N )
0

�
= ei (C

�; �N) + fi

�
C
�(maxC�)
0

�
:
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Let C 00 = C
�(maxC�)
0 . It is straightforward to check that C 00 is irreducible.

Moreover, Ne (C�0) = Ne (C
0
0) [ fNg. For each S 2 Ne (C 00), �S = �0S, and

c0�i0 = c
�
i0 � �N . Hence, applying the induction hypothesis, for each i 2 N ,

fi (C0) = ei (C
�; �N) + fi (C

0
0)

= ei (C
�; �N) + c

0�
i0 +

X
S2Ne(C00)

(ei (C
�
S; �S)� �S)

= ei (C
�; �N) + c

�
i0 � �N +

X
S2Ne(C00)

(ei (C
�
S; �S)� �S)

= c�i0 +
X

S2Ne(C�0)

(ei (C
�
S; �S)� �S)

= f ei (C0) :

4 The main characterization

Given (N1; C1) ; (N2; C2) 2 C, N1 \N2 = ;, and a 2 R+, we de�ne�
N1 [N2; C1 �a C2

�
as the mccp C given by cij = c�ij if i; j 2 N� for some � 2 f1; 2g, and

cij = a+maxC
1

for all i 2 N1, j 2 N2.

For convenience, we write C1 �a C2 �b C3 instead of (C1 �a C2) �b C3,
and so on.

Given a = (a1; :::; a�),
�
C1; :::; C�

�
, and  � � we denote

C (a) = C1 �a1 C2 �a2 :::�a�1 C:

Notice that, given  > 1,

C (a) = C�1 (a)�a�1 C: (1)
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Proposition 4.1 (i) Given (N 0; C 0) ; (N 00; C 00) 2 C� and a 2 R+ with N 0 \
N 00 = ; and a � maxC 00 �maxC 0, then C 0 �a C 00 2 C�.
(ii) Given a disjoint sequence f(N; C)g�=1 � C�, � > 1, a 2 R�+ with

a � maxC+1�maxC for all  = 1; :::;��1, and y 2 [0; a2], then C (a) 2
C� and C (a0) 2 C� for all  = 1; :::;�, where a0 = (a1 + y; a2 � y; a3; :::; a�).

Proof. (i) Let C = C 0�a C 00. It is easily checked that a+maxC 0 = maxC.
Hence, we can �nd a mcst t in C and C� such that t = t1 [ t2 [ f(k1; k2)g
where t1 is mcst in C 0; t2 is a mcst in C 00, k1 2 N1 and k2 2 N2. Since

ck1k2 = maxC � cij for all (i; j) 2 t1 [ t2 we can deduce, using the de�nition
of irreducible matrix, that C = C�.

(ii) We assume  > 1, since the case  = 1 is trivial. We proceed

by induction on �. For � = 2, the result follows from (i) because a01 =

a1 + y � a1 � maxC2 � maxC1. Assume the result is true for sequences
with less than � mcstp�s, � � 3. Under the induction hypothesis, we

have C (b), C (b0) 2 C� where  = 1; :::;� � 1, b = (a1; :::; a��1) and

b0 = (a1 + y; a2 � y; a3; :::; a��1). Now, it is clear that C (a) = C (b) and

C (a0) = C (b0) for all  = 1; :::;� � 1. Hence, the result holds for any
 < �. Assume now  = �. We have

C� (a)
(1)
= C��1 (a)�a��1 C� (a)

(i)
2 C�

and

C� (a0)
(1)
= C��1 (a0)�a0��1 C

� (a0) :

In order to apply (i) to this last expression (so that C� (a0) 2 C�) we have
to prove that

a0��1 � maxC� (a0)�maxC��1 (a0) (2)

It is straightforward to check that maxC (a0) = maxC (a) for all  6= 2,
whereas maxC2 (a0) = maxC2 (a) + y. Hence, for � > 3,

maxC� (a0)�maxC��1 (a0) = maxC� (a)�maxC��1 (a) � a��1 = a0��1

and for � = 3,

maxC3 (a0)�maxC2 (a0) = maxC3 (a)�maxC2 (a)� y � a2 � y = a02:
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Figure 1: Minimum cost connection problems C (a) ; C (a0) for  = 1; 2; 3.

PRO requires the aggregate assignment of extra costs for players 1, 2, 4 and

5 to be not higher with a than with a0.

De�nition 4.1 We say that an extra-costs correspondences e satis�es the

property of Proximity (PRO) if for all disjoint sequences f(N; C)g�=1 �
C�, � � 1, i 2 Ni with i 6= 2, a 2 R�+ with a � maxC+1 � maxC for
all  = 1; :::;�� 1, and y 2 [0; a2] (y � 0 when � = 1), we have

�X
=i

ei
�
C (a0) ; a0

�
�

�X
=i

ei (C
 (a) ; a)

where a0 = (a1 + y; a2 � y; a3; :::; a�) (a0 = (a1 + y) when � = 1).

Example 4.1 Let � = 3, N1 = f1; 2g ; c112 = 10; N2 = f3g ; N3 = f4; 5g and
c345 = 0. Then, a = (25; 15; 20) and a

0 = (25 + y; 15� y; 20) with y 2 [0; 15]
satisfy the conditions imposed on the de�nition of PRO: a1 = 25 � 0� 10 =
maxC2 �maxC1, a2 = 15 � 0� 0 = maxC3 �maxC2. C (a) and C (a0)
are described in Figure 1.

Let bP be the set of all rules f e such that e satis�es PRO.
14



Theorem 4.1 Let f be a rule. Then, f satis�es BB, SCM and PM if and

only if f 2 bP .
Proof. We already now (by Proposition 3.4) that any f 2 bP satis�es BB.
We now prove that if f 2 bP , then f satis�es SCM and PM . Assume

that f = f e where e satis�es PRO.

Let CN0 denote the subset of mcstp whose set of nodes is N .
Following Tijs, Moretti, Branzei and Norde (2004), we de�ne the set �N0

of linear orders on the arcs of C0 as the set of all bijections � :
�
1; :::;

�
n+1
n

�	
!

ffi; jg : i; j 2 N0g. For each mcstp (N0; C0), there exists at least one linear
order � 2 �N0 such that c�(1) � c�(2) � ::: � c�((n+1n )). For any � 2 �N0, we
de�ne the set

K� =
�
C0 2 CN0 : c�(k) � c�(k+1) for all k = 1; 2; :::

	
;

which we call the Kruskal cone with respect to �. One can easily see thatS
�2�N0

K� = CN0 :
We say that a nonempty set S � N is a quasi-neighborhood in C0 if

�S � 0. Let qNe (C0) = fS � N;S 6= ; : �S � 0g denote the set of quasi-
neighborhoods in C0. Clearly, Ne (C0) � qNe (C0).
We now prove that f satis�es SCM . It is enough to prove that f (N0; C0) �

f (N0; C
0
0) when there exists fk; lg � N0 such that c0kl > ckl and c0ij = cij oth-

erwise. Let (k; l), C0 and C 00 be de�ned in this way.

For any t 2 [0; 1], the mcstp (N0; Ct0) de�ned as ctij = (1� t) cij + tc0ij
satis�es c0kl � ctkl � ckl and ctij = cij otherwise. Since �N0 is a �nite set, there
exist a sequence ft1; t2; :::tpg � [0; 1] with t1 = 0 and tp = 1 such that, for all
r, we have tr < tr+1 and Ct

r
and Ct

r+1
belong to the same Kruskal cone.

Hence, it is enough to prove that f (N0; C0) � f (N0; C 00) when both C0
and C 00 belong to the same Kruskal cone. An immediate consequence is that

there exists a common mcst t in both C0 and C 00.

By de�nition of f , it is obvious that f (N0; C0) = f (N0; C
�
0). Hence, if

fk; lg =2 t, then C�0 = C 0�0 and thus

f (N0; C0) = f (N0; C
�
0) = f (N0; C

0�
0 ) = f (N0; C

0
0) :

15



Hence, we assume fk; lg 2 t. This implies ckl = c�kl and c
0
kl = c0�kl. Let

� = c0�kl � c�kl > 0.
Another consequence of C0, C 00 being in the same Kruskal cone is that, for

any S � N , jSj > 1, there exist i1; i2; j2 2 S, j1 2 N0nS with fi2; j2g 2 � (S)
such that

�S = min
i02S;j02N0nS

ci0j0 � max
fi0;j0g2�(S)

ci0j0 = ci1j1 � ci2j2 and

�0S = min
i02S;j02N0nS

c0i0j0 � max
fi0;j0g2�(S)

c0i0j0 = c
0
i1j1 � c0i2j2 :

Thus �S and �
0
S cannot have opposite sign. Namely, �S > 0 implies �

0
S � 0.

From this, it is straightforward to check that Ne (C0) � qNe (C 00) and,

analogously, Ne (C 00) � qNe (C0).
Given any X � 2N with Ne (C0) � X � qNe (C0), we have

fi (N0; C0) = c
�
i0 �

X
S2X:S3i

(�S � ei (C�S; �S)) (3)

for all i 2 N . The reason is that for any S 2 qNe (C0) nNe (C0), �S = 0 and
hence �S � ei (C�S; �S) = 0� ei (C�S; 0) = 0.
We de�ne X = Ne (C0) [ Ne (C 00). Clearly, Ne (C0) � X � qNe (C0)

and Ne (C 00) � X � qNe (C 00).
Fix i 2 N . We need to prove that fi (N0; C0) � fi (N0; C

0
0). Under (3),

we have

fi (N0; C0) = c�i0 �
X

S2X:S3i
(�S � ei (C�S; �S))

fi (N0; C
0
0) = c0�i0 �

X
S2X:S3i

(�0S � ei (C 0�S ; �0S)) :

We have seen above that

�S = ci1j1 � ci2j2 and �0S = c0i1j1 � c0i2j2

for some i1; i2; j2 2 S, j1 2 N0nS with fi2; j2g 2 tS.
By hypothesis, cjj0 = c0jj0 for all fj; j0g 6= fk; lg. Hence, �S = �0S unless

fi1; j1g = fk; lg or fi2; j2g = fk; lg.
Given S 2 X and �S 6= �0S we study both cases:

16



1. If fi1; j1g = fk; lg, then �0S = �S + �. Moreover, there can be at

most two such S. One of them contains node k (if any) and the other

contains node l (if any). Assume, on the contrary, that there exist two

S 0 2 X;S 6= S 0 with k 2 S\S 0 (the case for l 2 S is analogous). Hence,

c0kl = c
0�
kl = min

i02S;j02N0nS
c0�i0j0 = min

i02S0;j02N0nS0
c0�i0j0 :

Since k 2 S \ S 0, under Corollary 3.1, S  S 0 or S 0  S. Assume

w.l.o.g. S  S 0. Then,

c0�kl = min
i02S;j02N0nS

c0�i0j0 � min
i02S;j02S0nS

c0�i0j0

� max
i0;j02S0

c0�i0j0 � min
i02S0;j02N0nS0

c0�i0j0 = c
0�
kl

which implies that no inequality is strict. In particular, max
i0;j02S0

c0�i0j0 = c
0�
kl.

Since fk; lg * S 0, max
i0;j02S0

c0�i0j0 = max
i0;j02S0

c�i0j0 and hence

�S0 = min
i02S0;j02N0nS0

c�i0j0 � max
i0;j02S0

c�i0j0 = c
�
kl � c0�kl = �� < 0;

which is a contradiction.

2. If fi2; j2g = fk; lg, then �0S = �S � �. Moreover, there can be at most
one such S. Assume, on the contrary, that there exists S 0 2 X, S 6= S 0,
k; l 2 S \ S 0, and

ckl = c
�
kl = max

i0;j02S
c�i0j0 = max

i0;j02S0
c�i0j0 :

Since k 2 S \ S 0; under Corollary 3.1, S  S 0 or S 0  S. Assume

w.l.o.g. S  S 0. Then,

c�kl = max
i0;j02S

c�i0j0 � min
i02S;j02N0nS

c�i0j0 � min
i02S;j02S0nS

c�i0j0 � max
i0;j02S0

c�i0j0 = c
�
kl

which implies that no inequality is strict. Thus, min
i02S;j02N0nS

c�i0j0 = c�kl

and hence

�S = min
i02S;j02N0nS

c�i0j0 � max
i0;j02S

c�i0j0 = c
�
kl � c�kl = 0;

which implies �0S = �S � � = �� < 0, which is a contradiction.
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Let Sk =
�
j 2 N0 : c0�kj < c0�kl

	
and let Sl =

�
j 2 N0 : c0�kj < c0�kl

	
. Both Sk

and Sl are nonempty (because k 2 Sk and l 2 Sl) and disjoint (it follows
from fk; lg 2 t). Since they are disjoint, we can assume w.l.o.g. 0 =2 Sk. Let
S1 = S

k. If jS1j > 1, then

l =2 S1;

c0�kl = min
i02S1;j02N0nS1

c0�i0j0 ;

�0S1 = c0�kl � max
i0;j02S

c0�i0j0 > 0

and hence either S1 2 Ne (C 00) or S1 = fkg.
Assume that S1 2 Ne (C 00) : Since C0 and C 00 are in the same Kruskal

cone, �S1 = c�i1j1 � c�i2j2 and �
0
S1
= c0�i1j1 � c0�i2j2 : Since �

0
S1
> 0 we deduce

that �S1 � 0: Hence S1 2 qNe (C0) : Now, it is not di¢ cult to check that S1
satis�es condition 1, hence �0S1 = �S1 + � when jS1j > 1.
Let S2 =

�
j 2 N0 : c�kj � c�kl

	
. Clearly, fk; lg � S2. Notice that if 0 2 S2

then S2 =2 X: It is straightforward to check that if 0 =2 S2 then S2 2 X:
Besides S1  S2 and there is no S 2 X, S 6= S1, such that S1  S  S2.
In case 0 =2 S2, it is not di¢ cult to check that S2 satis�es condition 2,

hence �0S2 = �S2 � �.
Let F = fS 2 Ne (C0) : S1 � S; �S = �0Sg and let F 0 = fS 2 Ne (C 00) : S1 � S; �S = �0Sg.

It is not di¢ cult to check that F = F 0 (F = F 0 = ; is also possible) and,
moreover, S1; S2 =2 F . By Proposition 3.3 we can assume F = fS3; S4; :::; S�g
for some � � 2 (� = 2 when F = ;) and S  S+1 for all  = 3; :::;�� 1.
Let G = fS 2 X : S1 � Sg. Clearly, either G = fS1; :::; S�g (when S1 2

Ne (C 00)) or G = fS2; :::; S�g (when S1 = fkg). Moreover, S  S+1 for all
 = 1; 2; :::;�� 1.
If i =2 S�, it is straightforward to check that fi (N0; C0) = fi (N0; C 00).
Hence, we assume i 2 S for some  2 f1; :::;�g. Let i be the minimum

of these �s.

We have two cases:

Case 1: � = 1. This means S2 =2 X. Since �S2 � 0, we have 0 2 S2,
which implies c�k0 � c�kl and also c0�k0 � c0�kl.
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Subcase 1.1: S1 = fkg = fig. This implies X = ; and hence

fi (N0; C
0
0)� fi (N0; C0) = c0�i0 � c�i0 � 0:

Subcase 1.2: S1 2 X. This implies c0�k0 � c0�kl and hence c0�k0 = c0�kl. This
implies c0�i0 � c�i0 = �. Moreover, C�S1 = C

0�
S1
. Hence,

fi (N0; C
0
0)� fi (N0; C0)

= c0�i0 �
�
�0S1 � ei

�
C 0�S1 ; �

0
S1

��
� c�i0 +

�
�S1 � ei

�
C�S1 ; �S1

��
= c0�i0 � c�i0 �

�
�S1 + �� ei

�
C�S1 ; �S1 + �

��
+
�
�S1 � ei

�
C�S1 ; �S1

��
= ei

�
C�S1 ; �S1 + �

�
� ei

�
C�S1 ; �S1

�
� 0

where the last inequality comes from applying PRO to
��
S1; C

�
S1

�	
with

� = 1, a1 = �S1 and y = �.

Case 2: � > 1. This means S2 2 X and hence 0 =2 Sl. Thus we can take
S1 = S

k or S1 = Sl: It is not di¢ cult to check that S2 = Sk [ Sl. If i 2 S2
we choose S1 such that i 2 S1. Thus, i 6= 2. This implies c0�i0 = c�i0.
In this case,

fi (N0; C
0
0)� fi (N0; C0)

= c0�i0 � c�i0 �
X

S2X:S3i
(�0S � �S � ei (C 0�S ; �0S) + ei (C�S; �S)) :

For any S 2 XnG with i 2 S, we have C�S = C 0�S , which also implies

�S = �
0
S. Hence,

fi (N0; C
0
0)� fi (N0; C0)

=

�X
=i

�
��0S + �S + ei

�
C 0�S ; �

0
S

�
� ei

�
C�S ; �S

��

=
�X

=i

ei

�
C 0�S ; �

0
S

�
�

�X
=i

ei

�
C�S ; �S

�
�

�X
=i

�
�0s � �s

�
:

The last term is zero, because �0S1 = �S1+�, �
0
S2
= �S2��, and �0S = �S

otherwise (remark that i 6= 2). Hence,

fi (N0; C
0
0)� fi (N0; C0) =

�X
=i

�
ei

�
C 0�S ; �

0
S

��
�

�X
=i

�
ei

�
C�S ; �S

��
:
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We now de�ne f(N; C)g�=1, a 2 R�+ and y 2 [0; a2] so that ei
�
C 0�S ; �

0
S

�
=

ei
�
C (a0) ; a0

�
and ei

�
C�S ; �S

�
= ei (C

 (a) ; a) for all . Under PRO, this

will prove that the above expression is nonnegative.

Let N1 = S1, C1 = C�N1, and a1 = �S1. In general, for any  = 2; :::;�;

N = SnS�1, C = (C�)N , and a = �S . We also de�ne y = �. Since

c0�kl = c
�
kl+�, it is straightforward to check that � � a2 and hence y 2 [0; a2].

Clearly, C 0�S1 = C
1. Now, we prove that C 0�S2 = C

1�a1+�C2 = C2 (a0). Let
C� = C 0�S2 and C

� = C1 �a1+� C2. Clearly, C� = (CS2 + �Ikl)
�.

It is straightforward to check that c�ij = c�ij for all i; j 2 N1 and all

i; j 2 N2. Let k1 2 N1 and k2 2 N2. Then,

c�k1k2 = maxC1 + a1 + � = maxC
1 + �S1 + � = min

i2N1

j2N0nN1

cij + �

= ckl + � = c
�
k1k2 :

Analogously, C 0�S3 = (CS3 + �Ikl)
� = (C1 �a1+� C2)�a2��C3 = C3 (a0) : In

general, C 0�S =
�
CS + �Ikl

��
= C1�a1+�C2�a1��C3�a3 :::�a�1C = C (a0)

for all  = 3; :::;�:

Similarly, we can prove that C�S = C
 (a) for all  = 1; :::;�:

Hence, by applying PRO, we have

fi (N0; C
0
0)� fi (N0; C0) � 0:

We now prove that f satis�es PM . By Theorem 3.1, we know that f

satis�es SEP . We must prove that for each mcstp (N0; C0) and j 2 N ,

fi (N0; C0) � fi ((Nn fjg)0 ; C0) for all i 2 Nn fjg. Let (N0; C 00) be de�ned
as c0ii0 = cii0 for all i; i

0 2 Nn fjg and c0ij = maxCN0nfjg for all i 2 N0n fjg.
Clearly, m (N0; C 00) = m ((Nn fjg)0 ; C 00) + m (fjg0 ; C 00) and hence, under
SEP , fi (N0; C 00) = fi ((Nn fjg)0 ; C 00) for all i 2 Nn fjg. Given i 2 Nn fjg,
under SCM ,

fi (N0; C0) � fi (N0; C 00) = fi ((Nn fjg)0 ; C 00) = fi ((Nn fjg)0 ; C0) :

We now prove that if f satis�es BB, SCM and PM , then f 2 bP .
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We de�ne e as in the proof of Theorem 3.1. Namely, for all C� 2 C�,
x 2 R+, and i 2 N ,

ei (C
�; x) = fi

�
C
�(maxC�+x)
0

�
� fi

�
C
�(maxC�)
0

�
:

and ei (C�; x) = 0 for all i =2 N . We already proved (proof of Theorem
3.1) that e is an extra-cost correspondence and f = f e.

Hence, we only need to check that e satis�es PRO. Let f(N; C)g�=1 �
C� be a disjoint sequence with � � 1, i 2 Ni with i 6= 2, a 2 R�+ with
a � maxC+1 � maxC for all  = 1; :::;� � 1 and y 2 [0; a2] (or simply
y � 0, when � = 1).
Assume �rst � = 1. We need to prove

ei
�
C1; a1 + y

�
� ei

�
C1; a1

�
� 0:

Let C = C1. By de�nition,

ei (C; a1 + y)� ei (C; a1)

= fi

�
C
�(maxC�+a1+y)
0

�
� fi

�
C
�(maxC�)
0

�
� fi

�
C
�(maxC�+a1)
0

�
+ fi

�
C
�(maxC�)
0

�
= fi

�
C
�(maxC�+a1+y)
0

�
� fi

�
C
�(maxC�+a1)
0

�
� 0

where the last inequality comes from the fact thatC�(maxC
�+a1+y)

0 � C�(maxC
�+a1)

0

and f satisfy SCM .

Assume now � > 1. We need to prove

�X
=i

ei
�
C (a0) ; a0

�
�

�X
=i

ei (C
 (a) ; a) � 0

where a0 = (a1 + y; a2 � y; a3; :::; a�) and C (b) = C1 �b1 C2 �b2 :::�b�1 C

for all  = 1; :::;� and all b 2 R�+.
By de�nition,

ei (C
�; x) = fi (C

� �x (f0g ; 0))� fi (C� �0 (f0g ; 0)) :

Under SEP , it is straightforward to check that

fi (C
 (b)�0 (f0g ; 0)) = fi

�
C�1 (b)�b�1 (f0g ; 0)

�
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for all  = i + 1; :::;� and all b 2 R�+. Now,

�X
=i

ei
�
C (a0) ; a0

�
=

�X
=i

�
fi
�
C (a0)�a0 (f0g ; 0)

�
� fi (C (a0)�0 (f0g ; 0))

�
= fi

�
C� (a0)�a0� (f0g ; 0)

�
� fi (Ci (a0)�0 (f0g ; 0))

and

�X
=i

ei (C
 (a) ; a)

=
�X

=i

�
fi
�
C (a)�a (f0g ; 0)

�
� fi (C (a)�0 (f0g ; 0))

�
= fi

�
C� (a)�a� (f0g ; 0)

�
� fi (Ci (a)�0 (f0g ; 0)) :

Hence,

�X
=i

ei
�
C (a0) ; a0

�
�

�X
=i

ei (C
 (a) ; a)

= fi (C
i (a)�0 (f0g ; 0))� fi (Ci (a0)�0 (f0g ; 0))

+fi
�
C� (a0)�a0� (f0g ; 0)

�
� fi

�
C� (a)�a� (f0g ; 0)

�
Under SCM , fi

�
C� (a0)�a0� (f0g ; 0)

�
� fi

�
C� (a0)�a0� (f0g ; 0)

�
.

We now prove that fi (Ci (a)�0 (f0g ; 0)) = fi (Ci (a0)�0 (f0g ; 0)). For
i = 1, C1 (a) = C1 (a0) = C1 and the result holds trivially. Assume i >

2. Then, N1 [ ::: [ Ni�1 and Ni are two separable components in both

Ci (a) �0 (f0g ; 0) and Ci (a0) �0 (f0g ; 0). Moreover, the restriction of C�

to Ni coincides in both mcstp. Under SEP , we obtain the result.

Hence,
�X

=i

ei
�
C (a0) ; a0

�
�

�X
=i

ei (C
 (a) ; a) � 0:
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