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Abstract We consider a multiperiod financial exchange economy with nominal
assets and restricted participation, where each agent’s portfolio choice is restricted to
a closed, convex set containing zero, as in Siconolfi (Non-linear Dynamics in Econom-
ics and Social Sciences, 1989). Using an approach that dates back to Cass (CARESS
Working Paper, 1984; J Math Econ 42:384–405, 2006) in the unconstrained case, we
seek to isolate arbitrage-free asset prices that are also quasi-equilibrium or equilib-
rium asset prices. In the presence of such portfolio restrictions, we need to confine our
attention to aggregate arbitrage-free asset prices, i.e., for which there is no arbitrage
in the space of marketed portfolios. Our main result states that such asset prices are
quasi-equilibrium prices under standard assumptions and then deduces that they are
equilibrium prices under a suitable condition on the accessibility of payoffs by agents,
i.e., every payoff that is attainable in the aggregate can be marketed through some
agent’s portfolio set. This latter result extends previous work by Martins-da-Rocha
and Triki (Working Paper, University of Paris 1, 2005).
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1 Introduction

In financial markets, agents face several restrictions on what assets they can trade
and the extent to which they can trade in these assets. Such constraints on agents’
portfolios are not exceptional cases and can also explain why markets are incomplete.
Some of the well-known institutional restrictions are transactions costs, short sales
constraints, margin requirements, frictions due to bid-ask spreads and taxes, collateral
requirements, capital adequacy ratios, and target ratios. Elsinger and Summer (2001)
give an extensive discussion of these institutional constraints and how to model them
in a general financial model. On the other hand, agents may be restricted due to some
behavioral reasons. For instance, following Radner and Rothschild (1975), we can
suppose that agents have limits on how much information they can process. This may
cause each investor to concentrate on only a subset of assets to begin with.

Given that agents can face such restrictions on their portfolio choices, there are two
ways in which such restrictions can be incorporated into a general financial model. The
first is to assume that these restrictions are institutional, hence exogenously given, and
we can take them as primitives of the model. In this paper, we adopt this approach and
consider very general restrictions on portfolio sets which are assumed to be closed,
convex and contain zero, as in Siconolfi (1989). Such general portfolio sets are able to
capture all the institutional restrictions listed earlier (see Elsinger and Summer 2001).
Alternatively, we can model these restrictions as arising endogenously, as in Cass et al.
(2001) and more recently Carosi et al. (2009), and in a truly general model, this is
what we would expect. Villanacci et al. (2002) summarize some earlier work in this
direction.

In such models, the existence issue has been extensively studied since the seminal
paper by Radner (1972). Duffie and Shafer (1985, 1986) showed a generic existence
result with real assets, hence answering the issue raised by Hart’s counterexample (Hart
1975), with the drop of rank in the payoff matrix. An extensive body of literature is
built upon their argument (see for example Geanakoplos and Shafer 1990; Hirsch
et al. 1990; Husseini et al. 1990; Bich and Cornet 2004, 2009). Another approach was
to consider the cases of nominal or numéraire assets for which there is no drop of
rank in the payoff matrix, hence no need for generic existence. Cass (1984, 2006),
Duffie (1987), and Werner (1985) showed existence with nominal assets. Existence
with numéraire assets was provided subsequently by Geanakoplos and Polemarchakis
(1986). However, the presence of nominal assets will result in real indeterminacy at
equilibrium (see Balasko and Cass 1989; Geanakoplos and Mas-Colell 1989; Cass
1992; Dubey and Geanakoplos 2006). Polemarchakis and Siconolfi (1993) show that
at noninformative prices restricted information can be modeled as restricted asset
market participation and with nominal assets the same indeterminacy issue arises.
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Alternatively, Cornet and De Boisdeffre (2002, 2009) provide a model of sequen-
tial elimination of arbitrage states under asymmetric information. Magill and Shafer
(1991) provide an extensive survey on the existence of financial markets equilibria
and contingent markets equilibria.

In the case of purely financial securities, Cass (1984, 2006) was able to charac-
terize equilibrium asset prices as arbitrage-free assets prices when some agent in the
economy has no portfolio restriction. In a trick initiated by Cass (1984, 2006) and
used subsequently by Werner (1985), Duffie (1987), and also by Duffie and Shafer
(1985) and Bich and Cornet (2004) for pseudo-equilibria, the treatment of the agents
is asymmetric with this (unconstrained) agent behaving competitively as in an Arrow-
Debreu economy. A symmetric approach to the existence problem was considered
by Radner (1972), Siconolfi (1989), Martins-da-Rocha and Triki (2005), Florig and
Meddeb (2007), and Aouani and Cornet (2009), in the sense that no agent plays a
particular role, hence the Cass trick is ruled out. Moreover, Martins-da-Rocha and
Triki (2005) generalize Cass’ characterization of equilibrium asset prices as arbitrage-
free asset prices to the case where agents have portfolio restrictions. Alternatively, in a
strategic market framework the market clearing asset prices themselves are determined
by arbitrage activity and hence there may exist arbitrage activity even at equilibrium
(see Koutsougeras and Papadoupoulos 2004).

In this paper, we will consider a multiperiod model with nominal assets and restricted
participation, where each agent’s portfolio choice is restricted to a closed, convex set
containing zero, as in Siconolfi (1989). The multiperiod model is better equipped to
capture the evolution of time and uncertainty and is a first step before studying infi-
nite horizon models. Following the pioneering model of Debreu (1959) we consider
an event-tree to represent the evolution of time and uncertainty, and we will follow
the presentation by Angeloni and Cornet (2006), which extends the standard model
presented in Magill and Quinzii (1996). In the presence of portfolio restrictions, we
need to confine our attention to aggregate arbitrage-free asset prices, i.e., for which
there is no arbitrage opportunity in the space of marketed portfolios. Our main result
states that aggregate arbitrage-free asset prices are accounts clearing quasi-equilibrium
prices under standard assumptions. The notion of quasi-equilibrium is closely related
to the one introduced by Gottardi and Hens (1996) in a two-date incomplete market
model without consumption in the first date, and then suitably modified by Seghir
et al. (2004) to include consumption in the first date. However, we differ from these
notions by assuming that only the financial accounts are cleared at quasi-equilibrium,
instead of the standard portfolio clearing condition as in Gottardi and Hens (1996).

The paper is organized as follows. In Sect. 2, we describe the multiperiod model
with restricted participation, we define the notions of equilibria with portfolio clear-
ing and accounts clearing in the financial markets, and we introduce the two notions
of individual and aggregate arbitrage-free asset prices. In Sect. 3, we present our
notion of accounts clearing quasi-equilibrium and discuss the relationship with the
one introduced by Gottardi and Hens (1996) and Seghir et al. (2004). We state our
main existence result of accounts clearing quasi-equilibria (Theorem 2) and present
the way to go from quasi-equilibria to equilibria (Sect. 3.5). This allows us to deduce
the existence of accounts clearing equilibria (Theorem 1) under a suitable condition
on the accessibility of payoffs by agents, i.e., every payoff that is attainable in the
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aggregate can be marketed through some agent’s portfolio set, a weaker version of the
locally collectively frictionless condition by Martins-da-Rocha and Triki (2005). We
also discuss the relationship with other results on the subject by Cass (1984, 2006),
Werner (1985), Duffie (1987), in the unrestricted portfolio case and by Martins-da-
Rocha and Triki (2005), and Angeloni and Cornet (2006) in the restricted portfolio
case. The proof of our main result (Theorem 2) is given in Sect. 4.

2 The multiperiod financial exchange economy

2.1 Time and uncertainty in a multiperiod model

We1 consider a multiperiod exchange economy with (T + 1) dates, t ∈ T :=
{0, . . . , T }, and a finite set of agents I = {1, . . . , I }. The stochastic structure of
the model is described by a finite event-tree D = {0, 1, 2, . . . , D} of length T and we
refer to Magill and Quinzii (1996) for a more detailed presentation together with an
equivalent formulation with information partitions. The set Dt ⊂ D denotes the nodes
(also called date-events) that could occur at date t and the family (Dt )t∈T defines a
partition of the set D; for each ξ ∈ D we denote by t (ξ) the unique time t ∈ T at
which ξ can occur, i.e., such that ξ ∈ Dt .

At each nonterminal date, t �= T , there is an a priori uncertainty about which
node will prevail in the next date. There is a unique non-stochastic event occurring
at date t = 0, which is denoted by 0 so D0 = {0}. Finally, every ξ ∈ Dt , t �= 0
has a unique immediate predecessor in Dt−1, denoted ξ− or pr1(ξ), and the mapping
pr1 : D \ {0} −→ D is assumed to satisfy pr1(Dt ) = Dt−1, for every t �= 0. For
each ξ ∈ D, we let ξ+ = {ξ̄ ∈ D : ξ = ξ̄−} be the set of immediate successors of ξ ;
we notice that the set ξ+ is nonempty if and only if ξ �∈ DT .

Moreover, for τ ≥ 2 and ξ ∈ D \ ⋃τ−1
t=0 Dt we define, by induction, pr τ (ξ) =

pr1(pr τ−1(ξ)) and we let the set of (not necessarily immediate) successors and the

1 In this paper, we shall use the following notations. Let x, y be in R
n , we denote by x · y := ∑n

i=1 xi yi
the scalar product of R

n , also denoted x •n y when we use scalar products on different Euclidean spaces.
We denote by ‖x‖ := √

x · x the Euclidean norm of R
n and the closed ball centered at x ∈ R

n of radius
r > 0 is denoted Bn(x, r) := {y ∈ R

n : ‖y − x‖ ≤ r}. We shall use the notation x ≥ y (resp. x 	 y)
if xh ≥ yh (resp. xh 	 yh ) for every h = 1, . . . , n and x > y means that x ≥ y and x �= y. We let
R

n+ = {x ∈ R
n : x ≥ 0} and R

n++ = {x ∈ R
n : x 	 0}. Consider a (D × J )−matrix A with D rows and

J columns, with entries A j
ξ (ξ ∈ D, j ∈ J ), we denote by Aξ the ξ -th row of A (hence a row vector, i.e., a

(1 × J )-matrix, often identified to a vector in R
J when there is no risk of confusion) and A j denotes the

j−th column of A (hence a column vector, i.e., a (D × 1)-matrix, similarly often identified to a vector in
R

D). Again if there is no risk of confusion, we will use the same notation for the (D × J )−matrix A and the
associated linear mapping A : R

J → R
D . We recall that the transpose of A is the unique (J × D)−matrix

denoted by AT satisfying (AT )
ξ
j = A j

ξ (ξ ∈ D, j ∈ J ), which in terms of linear mapping can be formulated

as (Ax) •D y = x •J (AT y), for every x ∈ R
J , y ∈ R

D . We shall denote by rank A the rank of the matrix
A, by ker A the kernel of A, that is, the set {x ∈ R

J : Ax = 0}, and by Im A the image of A, that is, the set
{Ax : x ∈ R

J }.
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set of predecessors of ξ be, respectively, defined by

D+(ξ) = {ξ ′ ∈ D : ∃τ ∈ T \ {0} : ξ = pr τ (ξ ′)},
D−(ξ) = {ξ ′ ∈ D : ∃τ ∈ T \ {0} : ξ ′ = pr τ (ξ)}.

If ξ ′ ∈ D+(ξ) [resp. ξ ′ ∈ D+(ξ)∪{ξ}], we shall also use the notation ξ ′ > ξ [resp.
ξ ′ ≥ ξ ]. We notice that D+(ξ) is nonempty if and only if ξ �∈ DT and D−(ξ) is non-
empty if and only if ξ �= 0. Moreover, one has ξ ′ ∈ D+(ξ) if and only if ξ ∈ D−(ξ ′)
and similarly ξ ′ ∈ ξ+ if and only if ξ = (ξ ′)−.

2.2 The stochastic exchange economy

At each node ξ ∈ D, there is a spot market where � divisible physical goods are
available. We assume that each physical good does not last for more than one period.
In this model, a commodity is a couple (h, ξ) of a physical good h ∈ H := {1, . . . , �}
and a node ξ ∈ D at which it will be available, so the commodity space is R

L , where
L := �D and we let L = H × D.

An element x in R
L is called a consumption, and we will use the notation x =

(x(ξ))ξ∈D ∈ R
L , where x(ξ) = (x1(ξ), . . . , x�(ξ)) ∈ R

�, denotes the spot consump-
tion at node ξ ∈ D. Similarly, we denote by p = (p(ξ))ξ∈D ∈ R

L the vector of spot
prices and p(ξ) = (p1(ξ), . . . , p�(ξ)) ∈ R

� is called the spot price at node ξ ∈ D.
The spot price p(h, ξ) is the price paid at time t (ξ) for one unit of the physical good
h at node ξ if this node prevails. Thus the value of the spot consumption x(ξ) at node
ξ ∈ D (evaluated in unit of account of node ξ ) is

p(ξ) •� x(ξ) =
�∑

h=1

ph(ξ)xh(ξ).

Each agent i ∈ I is endowed with a consumption set Xi ⊂ R
L , which is the set

of her possible consumptions. The tastes of each consumer i ∈ I are represented
by a strict preference correspondence Pi from

∏
j∈I X j to Xi , where Pi (x) defines

the set of consumptions that are strictly preferred by i to xi , given the consump-
tions x j for the other consumers j �= i . Thus Pi represents not only the tastes of
consumer i but also her behavior under time and uncertainty, in particular her impa-
tience and her attitude towards risk. If consumers’ preferences are represented by
utility functions ui : Xi −→ R, the strict preference correspondence is defined by
Pi (x) = {x̄i ∈ Xi : ui (x̄i ) > ui (xi )}. Finally, at each node ξ ∈ D, every consumer
i ∈ I has a node-endowment ei (ξ) ∈ R

� (contingent to the fact that ξ prevails) and
we denote by ei = (ei (ξ))ξ∈D ∈ R

L her endowment vector across the different nodes.
The exchange economy E can thus be summarized by

E = (D, �, I, (Xi , Pi , ei )i∈I).
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2.3 The financial structure

We consider finitely many financial assets and we denote by J = {1, . . . , J } the set
of assets. An asset j ∈ J is a contract, which is issued at a given and unique node
in D, denoted by ξ( j) and called the emission node of j . Each asset j is bought (or
sold) at its emission node ξ( j) and only yields payoffs at the successor nodes ξ ′ of
ξ( j), that is, for ξ ′ > ξ( j). In this basic financial structure and in the statement of
our main existence result, we only consider nominal assets, that is the payoffs do not
depend on the spot price vector p (and only in the existence proof of Sect. 4 will we
need to consider an additional real asset).

For the sake of convenient notations, we shall in fact consider payoffs of asset j
at every node ξ ∈ D and assume that it is zero if ξ is not a successor of the emis-
sion node ξ( j). Formally, we denote by V j

ξ the payoff of asset j at node ξ ∈ D,

by V j = (V j
ξ )ξ∈D ∈ R

D its payoff across all nodes and we assume that V j
ξ = 0 if

ξ �∈ D+(ξ( j)). With the above convention, we notice that every asset has a zero payoff
at the initial node, that is, V j

0 = 0 for every j ∈ J . Furthermore, every asset j which

is emitted at the terminal date T has a zero payoff, that is, if ξ( j) ∈ DT , V j
ξ = 0 for

every ξ ∈ D. The price of asset j is denoted by q j and we recall that it is paid at its
emission node ξ( j). We let q = (q j ) j∈J ∈ R

J be the asset price (vector).

For every consumer i ∈ I, we denote by zi = (z j
i ) j∈J ∈ R

J the portfolio of agent

i and we make the following convention: if z j
i > 0 (resp. z j

i < 0), then |z j
i | denotes

the quantity of asset j ∈ J bought (resp. sold) by agent i at the emission node ξ( j).
We assume that each consumer i ∈ I is endowed with a portfolio set Zi ⊂ R

J , which
represents the set of portfolios that are admissible for agent i . If some agent i ∈ I
has no constraints on her portfolio choices, then Zi = R

J . Throughout this paper
we consider portfolio sets that are closed, convex, and contain zero for every agent, a
framework general enough to cover most of the constraints considered in the literature
(see Elsinger and Summer 2001).

To summarize, the financial asset structure F = (J , (ξ( j), V j ) j∈J , (Zi )i∈I) con-
sists of

• A finite set of assets J and each asset j ∈ J is characterized by its node of
issue ξ( j) ∈ D and its payoff vector V j = (V j

ξ )ξ∈D ∈ R
D , with V j

ξ = 0 if
ξ �∈ D+(ξ( j)).

• The portfolio set Zi ⊂ R
J for every agent i ∈ I.

• The space of marketed portfolios ZF := 〈⋃
i∈I Zi

〉
, that is, the linear space in

which portfolio activity of the economy takes place.2

• The payoff matrix of F is the D × J matrix having V j ( j = 1, . . . , J ) for column
vectors.

• The full payoff matrix W (q) is the (D × J )−matrix with entries W j
ξ (q) :=

V j
ξ − δξ,ξ( j)q j , where δξ,ξ ′ = 1 if ξ = ξ ′ and δξ,ξ ′ = 0 otherwise.

2 Given a subset A ⊂ R
n we denote by 〈A〉 := span A, the linear space spanned by A.
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So, for a given portfolio z ∈ R
J (and asset price q) the full flow of payoffs across

all nodes is W (q)z, a vector in R
D whose ξ -th component is the (full) financial payoff

at node ξ , that is

[W (q)z](ξ) = W (q, ξ) •J z =
∑

j∈J
V j

ξ z j −
∑

j∈J
δξ,ξ( j)q j z j

=
∑

{ j∈J : ξ( j)<ξ}
V j

ξ z j −
∑

{ j∈J : ξ( j)=ξ}
q j z j .

2.4 Equilibria of the financial economy

We now consider a financial exchange economy (E,F), which is defined as the couple
of an exchange economy E and a financial structure F as described above. Given the
price (p, q) ∈ R

L × R
J , the budget set of consumer i ∈ I is3

Bi (p, q) = {(xi , zi ) ∈ Xi × Zi : ∀ξ ∈ D, p(ξ) •� (xi (ξ) − ei (ξ)) ≤ [W (q)zi ](ξ)}
= {(xi , zi ) ∈ Xi × Zi : p�(xi − ei ) ≤ W (q)zi }.

We now introduce the standard notion of portfolio clearing equilibrium and an alter-
native definition, called accounts clearing equilibrium that we will adhere to in this
paper. The latter equilibrium notion is called weak equilibrium by Martins-da-Rocha
and Triki (2005). Note that the following definitions are slightly more general than the
standard ones in a multiperiod model, and we refer to Angeloni and Cornet (2006) for
the relationship with the standard definitions as defined in Magill and Quinzii (1996).

Definition 1 A portfolio clearing equilibrium (resp. accounts clearing equilibrium)
of (E,F) is a list of strategies and prices

(
x̄, z̄, p̄, q̄

) ∈ (RL)I × (RJ )I × R
L × R

J

such that p̄ �= 0 and

(a) every consumer i ∈ I maximizes her preference under the budget constraint
Bi ( p̄, q̄), that is, (x̄i , z̄i ) ∈ Bi ( p̄, q̄) and Bi ( p̄, q̄) ∩ [Pi (x̄) × Zi ] = ∅;

(b)
∑

i∈I x̄i = ∑
i∈I ei (Commodity market clearing condition);

(c)
∑

i∈I z̄i = 0 (resp.
∑

i∈I W (q̄)z̄i = 0) (Portfolio market (resp. accounts)
clearing condition).

In the above definition, an accounts clearing equilibrium only requires that the
payoffs (or accounts) of the financial markets are cleared, that is

∑
i∈I W (q̄)z̄i = 0,

which is weaker than the portfolio clearing condition:
∑

i∈I z̄i = 0. The relationship
between the two equilibrium notions is given in the next proposition.

Proposition 1 (a) Every portfolio clearing equilibrium of the economy (E,F) is an
accounts clearing equilibrium of (E,F).

3 For x = (x(ξ))ξ∈D, p = (p(ξ))ξ∈D in R
L = R

�D (with x(ξ), p(ξ) ∈ R
�) we let p�x = (p(ξ) •�

x(ξ))ξ∈D ∈ R
D .
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(b) Conversely, let (x̄, z̄, p̄, q̄) be an accounts clearing equilibrium of (E,F)

satisfying one of the following conditions: (i)
⋃

i∈I Zi is a vector space, or
(i i)ker W (q) ⊂ ⋃

i∈I Zi , then there exists a portfolio clearing equilibrium
(x̄, ẑ, p̄, q̄) of (E,F) which differs only in terms of the portfolio profile.

The proof of Proposition 1 is given in the Appendix. We now give some examples
in which the above Conditions (i) or (ii) are satisfied.

Example 1 (Cass Condition) Following Cass (1984, 2006), the set
⋃

i∈I Zi is a vector
space if the three following conditions hold:

• for some i0 ∈ I, Zi0 is a vector space,
• for every i ∈ I, Zi is closed, convex, contains zero, and Zi ⊂ Zi0 .

Example 2 At least one of the above Conditions (i) or (i i) (in Proposition 1) is true
when one of the following holds:4

• ⋃
i∈I Zi = R

J ;
• ker W (q) = {0};
• ker W (q) ⊂ ⋃

i∈I AZi (Martins-da-Rocha and Triki 2005).5

2.5 Arbitrage and equilibrium

Each agent faces different constraints on portfolios, so the arbitrage opportunities that
open up to individuals will be different from one another and different from what
may be available to the market as a whole. Hens et al. (2006) show this distinction
in a 2-date model with linear portfolio sets and Cornet and Gopalan (2006) extend
this result to a multiperiod model. A portfolio z̄i ∈ Zi is said to have no arbitrage
opportunities (or to be arbitrage-free) for agent i ∈ I at the price q̄ ∈ R

J if there is no
portfolio zi ∈ Zi such that W (q̄)zi > W (q̄)z̄i . It is well known that, under a standard
non-satiation assumption,6 at equilibrium there is no arbitrage at the individual level,
that is, if (x̄, z̄, p̄, q̄) is an equilibrium of the economy (E,F), then z̄i is arbitrage-free
at q̄ for every i ∈ I (see Angeloni and Cornet 2006). However, in this paper, we will
confine our attention to the stronger notion of aggregate arbitrage-free asset price,
i.e., for which there is no arbitrage in the space of marketed portfolios.

Definition 2 We say that the asset price q̄ ∈ R
J is aggregate arbitrage-free if one of

the following equivalent conditions hold:

(i) W (q̄)ZF ∩ R
D+ = {0};

(ii) There exists λ ∈ R
D++ such that λ •D W (q̄)z = 0 for all z ∈ ZF .

Notice that if q̄ is aggregate arbitrage-free and
∑

i∈I z̄i = 0, then (q̄, z̄i ) is arbi-
trage-free for each agent i ∈ I. The converse is true in particular if some agent is
unconstrained, i.e., if Zi = ZF for some agent i ∈ I.

4 For every closed convex subset Z ⊂ R
n we denote by AZ := {η ∈ R

n : Z + η ⊂ Z} the asymptotic
cone of Z .
5 A still weaker condition is provided in Martins-da-Rocha and Triki (2005).
6 That is, Assumptions C (vi) and K (ii) defined below.
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3 Existence of equilibria and quasi-equilibria

3.1 Existence of accounts clearing equilibria

We posit the main assumptions on the consumption side of the economy and we first
recall the definition of the set X̂ of attainable consumptions

X̂ =
{

x ∈
∏

i∈I
Xi :

∑

i∈I
xi =

∑

i∈I
ei

}

.

Assumption C (Consumption Side) For all i ∈ I and all x̄ ∈ ∏
i∈I Xi ,

(i) [Consumption Sets] Xi ⊂ R
L is closed, convex and bounded below by xi ;

(ii) [Continuity] the preference correspondence Pi from
∏

i∈I Xi to Xi , is lower
semicontinuous;7

(iii) [Openness-type] for every xi ∈ Pi (x̄) for every x ′
i ∈ Xi , x ′

i �= xi then [x ′
i , xi )∩

Pi (x̄) �= ∅;8

(iv) [Convexity] Pi (x̄) is convex;

(v) [Irreflexivity] x̄i �∈ Pi (x̄);
(vi) [Non-Satiation at Every Node] ∀x̄ ∈ X̂ ,∀ξ ∈ D, ∃xi (ξ) ∈ R

�, (xi (ξ),

x̄i (−ξ)) ∈ Pi (x̄);9

(vii) [Survival Assumption] For all i ∈ I, ei ∈ Xi .

Note that these assumptions on Pi are satisfied in particular when agents pref-
erences are given by a utility function that is continuous, strongly monotonic, and
quasi-concave.

Assumption S (Strong Survival Assumption) For all i ∈ I, ei ∈ int Xi .

Let q̄ ∈ R
0 J ; we consider the following assumptions on the financial side of the

economy. The first one need no additional comment and the second one is discussed
in the next section.

Assumption F (Financial Side) For all i ∈ I, Zi is closed, convex, 0 ∈ Zi , and
W (q̄)Zi is closed.10

7 A correspondence � from X to Y is said to be lower semicontinuous at x0 ∈ X if, for every open set
U ⊂ Y such that �(x0) ∩ U is not empty, there exists a neighborhood N of x0 in X such that, for all
x ∈ N , �(x) ∩ U is nonempty. The correspondence � is said to be lower semicontinuous if it is lower
semicontinuous at each point of X .
8 This is satisfied, in particular, when Pi (x̄) is open in Xi (for its relative topology). However, Proposition 2
(used in the proof of Theorem 2) is not true in general when one replaces the openness-type assumption by
the assumption that Pi has open values: see Bich and Cornet (2004) for a counter-example.
9 Given ξ ∈ D, we denote xi (−ξ) := (xi (ξ

′))ξ ′ �=ξ .
10 Note that this last assumption is satisfied when each portfolio set Zi is polyhedral, that is, it is defined
by linear inequality and equality constraints (see Rockafellar 1970).
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(a) (b) (c)

Fig. 1 Portfolio accessibility

Financial Accessibility FA: The closed cone spanned by
⋃

i∈I W (q̄)(Zi ) is a
linear space.

Our first result states that every aggregate arbitrage-free asset price will also be an
equilibrium price under the previous assumptions.

Theorem 1 Let q̄ ∈ R
J be aggregate arbitrage-free and suppose (E,F) satisfies

Assumptions C, S, F, and FA. Then there exists (x̄, z̄, p̄) such that (x̄, z̄, p̄, q̄) is an
accounts clearing equilibrium.

The proof of Theorem 1 is given in Sect. 3.5 as a consequence of a more general
result on the existence of quasi-equilibria, stated in Sect. 3.4.

3.2 Financial and portfolio accessibility conditions

The Financial Accessibility Condition FA requires that a fraction of any payoff in the
aggregate is accessible by some agent. In the unrestricted case, the Strong Survival
Assumption S guarantees sufficient wealth accessibility to agents in order to establish
the existence of an equilibrium (see Cass 1984, 2006; Duffie 1987; Werner 1985).
However, with restricted participation in asset markets, even with Assumption S,
there is a need for an accessibility condition on the financial side as well: see Martins-
da-Rocha and Triki (2005) and Angeloni and Cornet (2006) (and the Conditions FA2’
and FA3 below). It is worth pointing out that Assumption FA is satisfied under the
following portfolio accessibility condition:
Portfolio Accessibility PA: The closed cone spanned by

⋃
i∈I Zi is a linear space.

This condition is discussed in the next example and represented in Fig. 1, together
with two stronger conditions, also of interest.

Example 3 : (Portfolio Accessibility) Consider two assets and two agents. The second
asset can be bought only by the first agent and sold only by the second agent. The first
asset is unconstrained for both agents in Fig. 1a and for the second agent in Fig. 1b;
it is constrained in the other cases.

• The set
⋃

i∈I Zi is a linear space, as in Fig. 1a
• The cone spanned by the set

⋃
i∈I Zi is a linear space, as in Fig. 1b

• The closed cone spanned by the set
⋃

i∈I Zi is a linear space, as in Fig. 1c.
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3.3 Some consequences of Theorem 1

We now give some consequences of Theorem 1 and show the relationship with the
literature on this subject under different financial accessibility conditions.

Corollary 1 (Cass 1984, 2006; Werner 1985; Duffie 1987) Let q̄ ∈ R
J be aggregate

arbitrage-free. Suppose (E,F) satisfies C, F and S, together with
FA1: there exists i0 ∈ I such that Zi0 = R

J .
Then there exists (x̄, z̄, p̄) such that (x̄, z̄, p̄, q̄) is a portfolio clearing equilibrium.

Corollary 2 (Cass 1984, 2006) Let q̄ ∈ R
J be aggregate arbitrage-free. Suppose

(E,F) satisfies C, F and S, together with
FA2: for some i0 ∈ I, Zi0 is a linear space and for all i ∈ I, Zi ⊂ Zi0 .
Then there exists (x̄, z̄, p̄) such that (x̄, z̄, p̄, q̄) is a portfolio clearing equilibrium.

Corollary 3 (Angeloni and Cornet 2006) Let q̄ ∈ R
J be aggregate arbitrage-free.

Suppose (E,F) satisfies C, F and S, together with
FA2’: there exists i ∈ I such that 0 ∈ int Zi .
Then there exists (x̄, z̄, p̄) such that (x̄, z̄, p̄, q̄) is an accounts clearing equilibrium.

Corollary 4 (Martins-da-Rocha and Triki 2005) Let q̄ ∈ R
J be aggregate arbitrage-

free. Suppose (E,F) satisfies C, F and S, together with
FA3: the cone spanned by

( ⋃
i∈I W (q̄)Zi

)
is equal to Im W (q̄).

Then there exists (x̄, z̄, p̄) such that (x̄, z̄, p̄, q̄) is an accounts clearing equilibrium.

The proofs of the above corollaries are direct consequences of Theorem 1 and one
only needs to check the following two sets of implications: [FA1 ⇒ FA2 ⇒ FA3 ⇒
FA], and [FA2′ ⇒ FA].

3.4 Existence of accounts clearing quasi-equilibria

We now consider a mapping γ : R
L → R

D and define the associated γ -budget sets
and γ -quasi-budget sets defined for (p, q) ∈ R

L × R
J . The most simple choice of

such a function is to take γ = 0 (see Remark 1 below), but it is not general enough
for our purpose (see the next Sect. 3.5). The choice of the function γ to enlarge the
budget sets, plays the same role as the mapping α to define the modified budget sets
of Martins-da-Rocha and Triki (2005).

Bγ

i (p, q) = {(xi , zi ) ∈ Xi × Zi : ∃τi ∈ [0, 1], p�(xi − ei ) ≤ W (q)zi + τiγ (p)},
B̆γ

i (p, q) = {(xi , zi ) ∈ Xi × Zi : ∃τi ∈ [0, 1], p�(xi − ei ) � W (q)zi + τiγ (p)}.

Definition 3 An accounts clearing γ -quasi-equilibrium of (E,F) is a list
(
x̄, z̄,

p̄, q̄
) ∈ (RL)I × (RJ )I × R

L × R
J such that p̄ �= 0 and

(a-i) for every i ∈ I, (x̄i , z̄i ) ∈ Bi ( p̄, q̄);
(a-ii) B̆γ

i ( p̄, q̄) �= ∅ ⇒ Bγ

i ( p̄, q̄) ∩ [Pi (x̄) × Zi ] = ∅;
(b)

∑
i∈I x̄i = ∑

i∈I ei and
∑

i∈I W (q̄)z̄i = 0.

Our main result states
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Theorem 2 Let q̄ ∈ R
J be aggregate arbitrage-free, let λ ∈ R

D++ be an associated
state price (as in Definition 2), assume that (E,F) satisfies C, F, and that γ : R

L →
R

D is a continuous mapping satisfying

Assumption �1(q̄) : ∀p ∈ R
L , γ (p) ·λ = 0 and γ (p) · [W (q̄)zi ] = 0 for all zi ∈ Zi

and all i ∈ I.

Then there exists (x̄, z̄, p̄) such that (x̄, z̄, p̄, q̄) is an accounts clearing γ -quasi-
equilibrium.

The proof of Theorem 2 is given in Sect. 4.

Remark 1 When γ = 0, Bγ

i (p, q) = Bi (p, q) and the γ -quasi-budget set B̆γ

i (p, q)

is simply denoted B̆i (p, q), that is

B̆i (p, q) = {(xi , zi ) ∈ Xi × Zi : p�(xi − ei ) � W (q)zi }.

Thus, when γ = 0, an accounts clearing γ -quasi-equilibrium is simply called an
accounts clearing quasi-equilibrium, and Condition (a-ii) states that

B̆i ( p̄, q̄) �= ∅ ⇒ Bi ( p̄, q̄) ∩ [Pi (x̄) × Zi ] = ∅. (1)

Remark 2 For every mapping γ , we have Bi (p, q) ⊂ Bγ

i (p, q) and B̆i (p, q) ⊂
B̆γ

i (p, q) (taking τi = 0) and equality holds when γ = 0. Consequently, every
accounts clearing γ -quasi-equilibrium is an accounts clearing quasi-equilibrium11

and it is an accounts clearing equilibrium whenever we know that B̆γ

i ( p̄, q̄) �= ∅ for
all i .

Thus, the choice of γ gives some flexibility to parametrize accounts clearing quasi-
equilibria in a way that will be fully exploited hereafter to deduce Theorem 1 from
Theorem 2.

3.5 From quasi-equilibria to equilibria: proof of Theorem 1

In this section, we provide a proof of Theorem 1, as a direct consequence of Theorem 2.
As explained previously in Remark 2, we only need to choose a suitable mapping γ

so that the accounts clearing γ -quasi-equilibrium (x̄, z̄, p̄, q̄) that we get from Theo-
rem 2, satisfies the property that B̆γ

i ( p̄, q̄) �= ∅ for every i ∈ I. This is possible by
choosing γ as in the following lemma, in a way similar to Martins-da-Rocha and Triki
(2005). The proof of the lemma is given in Appendix.

11 Note first that Condition (a-i) in Definition 3 [(x̄i , z̄i ) ∈ Bi ( p̄, q̄) for every i ∈ I] is defined for the
standard budget set (and not the γ -budget set) and second that the quasi-equilibrium Condition (1) is a
consequence of the γ -quasi-equilibrium Condition (a-ii), using the above inclusions, which imply that
[B̆i ( p̄, q̄) �= ∅ ⇒ B̆γ

i ( p̄, q̄) �= ∅] and [Bγ
i ( p̄, q̄) ∩ [Pi (x̄) × Zi ] = ∅ ⇒ Bi ( p̄, q̄) ∩ [Pi (x̄) × Zi ] = ∅].
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Lemma 1 Let q̄ be aggregate arbitrage-free, let λ ∈ R
D++ be an associated state

price vector. Under the assumptions of Theorem 1, there exists a continuous mapping
γ : R

L → R
D satisfying �1(q̄) and

�2(q̄) : ∀ p̄ ∈ R
L , p̄ �= 0, ∃ i0 ∈ I, such that B̆γ

i0
( p̄, q̄) �= ∅.

The end of the proof of Theorem 1 is a consequence of the following claim:

Claim 1 (i) For all ξ ∈ D, p̄(ξ) �= 0;
(ii) For all i ∈ I, B̆γ

i ( p̄, q̄) �= ∅.

Proof Part (i). From Lemma 1, recalling that p̄ �= 0, there exists i0 ∈ I such that
B̆γ

i0
( p̄, q̄) �= ∅. Hence [Pi0(x̄)× Zi0 ] ∩ Bγ

i0
( p̄, q̄) = ∅, (from the γ -quasi-equilibrium

condition of the i0-th agent). Suppose there exists ξ ∈ D such that p̄(ξ) = 0. Since∑
i∈I x̄i = ∑

i∈I ei (from the Market Clearing Condition), from the Non-Satiation
Assumption C (v), there exists xi0 ∈ Pi0(x̄) such that xi0(ξ

′
) = x̄i0(ξ

′
) for every

ξ
′ �= ξ . Hence p̄�(xi0 − ei0) = p̄�(x̄i0 − ei0), which together with (x̄i0 , z̄i0) ∈

Bγ

i0
( p̄, q̄), implies that (xi0 , z̄i0) ∈ Bγ

i0
( p̄, q̄). Consequently (xi0 , z̄i0) ∈ Bγ

i0
( p̄, q̄) ∩

[Pi0(x̄) × Zi0 ], which contradicts the fact that it is empty from above.
Part (ii). From Part (i) of this Claim, p̄(ξ) �= 0, for all ξ ∈ D and we notice that

p̄� p̄ 	 0. Taking xi = ei − t p̄, for t > 0 small enough, we deduce that xi ∈ int Xi

(since ei ∈ int Xi from the Strong Survival Assumption S). Thus p̄�(xi − ei ) =
−t ( p̄� p̄) � 0 + 0γ ( p̄) (taking z̄i = 0 ∈ Zi , τ̄i = 0). This shows that (xi , 0) ∈
B̆γ

i ( p̄, q̄) �= ∅. ��

3.6 Other definitions of quasi-equilibrium

Gottardi and Hens (1996) consider a two-date incomplete market model without con-
sumption in the first date t = 0. Their definition of a quasi-equilibrium, suitably
modified by Seghir et al. (2004) to include consumption in first date is presented
below. In this section we consider a two-date model with S states at the second date
t = 1, that is, D = {0, 1, . . . S}. Hereafter we denote by p�1x the vector (p(1) •�

x(1), . . . , p(S) •� x(S)) ∈ R
S .

Definition 4 A list of strategies and prices
(
x̄, z̄, p̄, q̄

) ∈ (RL)I × (RJ )I × R
L × R

J

is a quasi-equilibrium of the financial exchange economy (E,F) if p̄ �= 0 and, for
every i ∈ I,

(a′ − i) x̄i ∈ Xi , z̄i ∈ Zi , and p̄�(x̄i − ei ) = W (q̄)z̄i ;
(a′ − i i) xi ∈ Pi (x̄) and p̄(s) · (xi (s) − ei (s)) ≤ Vs · zi (s = 1, . . . , S) ⇒ p̄(0) ·

(xi (0) − ei (0)) + q̄ · zi ≥ 0;
(a′ − i i i) for every s ∈ D, (xi (s), x̄i (−s)) ∈ Pi (x̄) implies p̄(s)·xi (s) ≥ p̄(s)· x̄i (s);

(b)
∑

i∈I x̄i = ∑
i∈I ei and

∑
i∈I z̄i = 0.

We can now compare the two notions of quasi-equilibria given in Definition 3 and
4, under the assumption (made by Gottardi and Hens 1996 and Seghir et al. 2004) that
there is no redundant asset, that is, rank V = J . In this case, the notions of portfolio
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clearing and accounts clearing quasi-equilibria of Definition 3 coincide; moreover,
both Market Clearing Conditions of Definition 3 and 4 coincide. Finally, Conditions
(a - i) and (a′-i) are equivalent as a direct consequence of the Market Clearing Con-
ditions. As shown in the following remark, when γ = 0, Condition (a′- i i) is stronger
than (a - i i) and both are equivalent under the assumption (made by Gottardi and
Hens 1996 and Seghir et al. 2004) that there is a riskless asset, that is, for all i there
exists ζi ∈ A(Zi ) such that V ζi 	 0. Finally, the two notions cannot be further com-
pared because Definition 3 introduces the mapping γ and Definition 4 introduces the
additional Condition (a′- i i i), none of which being considered by the other.

Remark 3 Condition (a′- i i) of Definition 4 is satisfied if and only if B̃i ( p̄, q̄) ∩
[Pi (x̄) × Zi ] = ∅, where

B̃i (p, q) = {(xi , zi ) ∈ Xi × Zi : for s = 0, p(0) · (xi (0) − ei (0)) < −q · zi ,

for s �= 0, p(s) · (xi (s) − ei (s)) ≤ Vs · zi }.

Furthermore, we always have B̆i (p, q) ⊂ B̃i (p, q) and the equality B̆i (p, q) =
B̃i (p, q) holds12 for agent i under the assumption (made by Gottardi and Hens 1996
and Seghir et al. 2004) that the financial structure has a riskless asset. In this case, the
two quasi-equilibrium conditions (a-i i) and (a′- i i) are equivalent.

4 Proof of Theorem 2

The proof of Theorem 2 consists of two main steps. In Sect. 4.1 we provide a proof of
Theorem 2 under the following additional assumptions (together with those already
made in Theorem 2).

Assumption K: For every i ∈ I,13

(i) [Boundedness] The sets Xi and W (q̄)Zi , are bounded;

(ii) [Local Non-Satiation] for every x̄ ∈ X̂ , for every xi ∈ Pi (x̄), [xi , x̄i ) ⊂ Pi (x̄).

Then, in Sect. 4.2, we will give the proof of Theorem 2 in the general case, that is,
without Assumption K. We will use a standard argument by modifying the original
economy (E,F) into a new economy (E ′,F ′), which satisfies Assumption K. Then we
will check that accounts clearing γ -quasi-equilibria of (E ′,F ′) correspond to accounts
clearing γ -quasi-equilibria of the original economy (E,F).

12 Indeed, let (xi , zi ) ∈ B̃i ( p̄, q̄). Then p̄(0) · (xi (0) − ei (0)) < −q̄ · zi and for s �= 0, p(s) · (xi (s) −
ei (s)) ≤ Vs · zi . Let ζi ∈ AZi such that V ζi 	 0, then, for all t > 0, zi + tζi ∈ Zi (since ζi ∈ AZi )
and for t > 0 small enough, (xi , zi + tζi ) ∈ B̆i ( p̄, q̄) since p̄(0) · (xi (0) − ei (0)) < −q̄ · zi − q̄ · (tζi ) =
−q̄(z + tζi ) and for s �= 0, p(s) · (xi (s) − ei (s)) < Vs · (zi + tζi )).
13 Note that we only assume the W (q̄)Zi to be bounded and not the Zi . This allows us to have redundant
assets, and we do not assume any rank condition on the matrix W (q̄).
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4.1 Proof of Theorem 2 under additional assumptions

In the following, let q̄ ∈ R
J be aggregate arbitrage-free, let λ ∈ R

D++ be an associated
state price vector (as in Definition 2), and let γ : R

L → R
D be a continuous mapping

satisfying Assumption �1(q̄) (but we do not assume Assumption �2(q̄)). We let14

BL = {p ∈ R
L : ||λ�p|| ≤ 1},

ρ( p̄) = (1 − ‖λ� p̄‖)11D,

Bγρ

i (p) =
{

xi ∈ Xi : ∃zi ∈ Zi , ∃τi ∈ [0, 1], p�(xi − ei ) ≤ W zi +τiγ (p)+ρ(p)
}
,

B̆γρ

i (p) =
{

xi ∈ Xi : ∃zi ∈ Zi , ∃τi ∈ [0, 1], p�(xi − ei ) � W zi +τiγ (p)+ρ(p)
}
.

4.1.1 The fixed point argument

For (p, x) ∈ BL × ∏
i∈I Xi , we define �i (p, x), for i ∈ I0 := {0} ∪ I, as follows:

�0(p, x) =
{

p′ ∈ BL : (
λ�(p′ − p)

) •L

∑

i∈I
(xi − ei ) > 0

}
,

and for every i ∈ I,

�i (p, x) =
⎧
⎨

⎩

{ei } if xi /∈ Bγρ

i (p) and B̆γρ

i (p) = ∅,

Bγρ

i (p) if xi /∈ Bγρ

i (p) and B̆γρ

i (p) �= ∅,

B̆γρ

i (p) ∩ Pi (x) if xi ∈ Bγρ

i (p).

The existence proof relies on the following fixed-point-type theorem:

Theorem 3 (Gale and Mas-Colell 1975) Let I0 be a finite set, let Ci (i ∈ I0) be a
nonempty, compact, convex subset of some Euclidean space, let C = ∏

i∈I0
Ci and

let �i (i ∈ I0) be a correspondence from C to Ci , which is lower semicontinuous and
convex-valued. Then, there exists c̄ = (c̄i )i ∈ C such that, for every i ∈ I0, either
c̄i ∈ �i (c̄) or �i (c̄) = ∅.

We now show that the sets C0 = BL , Ci = Xi (i ∈ I) and the above-defined corre-
spondences �i (i ∈ I0) satisfy the assumptions of Theorem 3. This is a consequence
of the following claim and the fact that BL and Xi (i ∈ I) are nonempty, convex, and
compact (by Assumptions C and K).

Claim 2 (i) For every c̄ := ( p̄, x̄) ∈ BL × ∏
i∈I Xi ,�i (c̄) is convex (possibly

empty);
(ii) For every i ∈ I0, the correspondence �i is lower semicontinuous on BL ×∏

i∈I Xi .

14 We let 11D denote the vector in R
D , whose coordinates are all equal to 1.
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Proof Part (i). Clearly �0(c̄) is convex and for all i ∈ I,�i (c̄) is convex (by Assump-
tions C and F).

Part (ii). From the definition of �0 it is clearly lower semicontinuous. The proof
of the lower semicontinuity of �i (i ∈ I) is given in Appendix. ��

In view of Claim 2, we can now apply the fixed-point Theorem 3. Thus, there exists
c̄ := ( p̄, x̄) ∈ BL × ∏

i∈I Xi such that, for every i ∈ I0, either �i ( p̄, x̄) = ∅ or
c̄i ∈ �i ( p̄, x̄). We now check that the second condition can never hold. Indeed, for
i = 0, c̄0 = p̄ �∈ �0(c̄), from the way it is defined; for every i ∈ I, c̄i = x̄i �∈ �i (c̄)
since x̄i �∈ Pi (x̄) (from the Irreflexivity Assumption C (v)) and ei ∈ Bγρ

i ( p̄). Thus,
we have shown that �i ( p̄, x̄) = ∅ for all i . Written coordinatewise (and noticing that
Bγρ

i ( p̄) �= ∅) we get

∀p ∈ BL , (λ�p) •D

∑

i∈I
(x̄i − ei ) ≤ (λ� p̄) •D

∑

i∈I
(x̄i − ei ) (2)

∀i ∈ I, x̄i ∈ Bγρ

i ( p̄) and B̆γρ

i ( p̄) ∩ Pi (x̄) = ∅. (3)

Thus, for all i ∈ I, there exists z̄i ∈ Zi and τ̄i ∈ [0, 1], such that

p̄�(x̄i − ei ) ≤ W (q̄)z̄i + τ̄iγ ( p̄) + ρ( p̄). (4)

4.1.2 (x̄, z̄, p̄, q̄) is an accounts clearing γ -quasi-equilibrium of (E,F)

We first prove that x̄ = (x̄i )i∈I satisfies the commodity market clearing condition.

Claim 3
∑

i∈I x̄i = ∑
i∈I ei .

Proof Suppose
∑

i∈I(x̄i − ei ) �= 0. From the Fixed-Point Assertion (2) we deduce

that (λ� p̄) =
∑

i∈I(x̄i −ei )

|| ∑i∈I(x̄i −ei )|| , hence ||λ� p̄|| = 1. So

(λ� p̄) •L

∑

i∈I
(x̄i − ei ) > 0. (5)

Summing up over i ∈ I, in the Inequalities (4) we get

p̄�
∑

i∈I
(x̄i − ei ) ≤

∑

i∈I
W (q̄)z̄i +

(
∑

i∈I
τ̄i

)

γ ( p̄) + (#I)ρ( p̄).

Taking the scalar product of both sides with λ 	 0 we get

(λ� p̄) •L

∑

i∈I
(x̄i −ei ) ≤ λ •D

∑

i∈I
W (q̄)z̄i +

(
∑

i∈I
τ̄i

)

λ •D γ ( p̄)+(#I)λ •D ρ( p̄).

On the right-hand side, we have λ •D
∑

i∈I W (q̄)z̄i = 0 (by Definition 2), λ •D

γ ( p̄) = 0 (by Assumption �1(q̄)), and ρ( p̄) = 0 (since ||λ� p̄|| = 1). Thus, (λ� p̄)•L∑
i∈I(x̄i − ei ) ≤ 0, which contradicts Inequality (5). ��
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Claim 4 For i ∈ I, such that B̆γρ

i ( p̄) �= ∅, one has:

(i) Bγρ

i ( p̄) ∩ Pi (x̄) = ∅,

(ii) p̄�(x̄i − ei ) = W (q̄)z̄i + τ̄iγ ( p̄) + ρ( p̄).

Proof Part (i). Suppose that Bγρ

i ( p̄)∩ Pi (x̄) contains some element xi . Since
B̆γρ

i ( p̄) �= ∅, we let x̆i ∈ B̆γρ

i ( p̄). Clearly xi �= x̆i (otherwise, xi ∈ B̆γρ

i ( p̄) ∩
Pi (x̄) �= ∅, which contradicts the Fixed-Point Assertion (3)). For α ∈ (0, 1], we let
xi (α) := α x̆i + (1 − α)xi and we check that xi (α) ∈ B̆γρ

i ( p̄) (since xi ∈ Bγρ

i ( p̄)

and x̆i ∈ B̆γρ

i ( p̄)). Moreover, for α small enough, xi (α) ∈ Pi (x̄) (by the Openness-
type Assumption C (iii) since xi ∈ Pi (x̄), x̆i ∈ Xi and xi �= x̆i ). Consequently,
xi (α) ∈ B̆γρ

i ( p̄) ∩ Pi (x̄) �= ∅, which contradicts the Fixed-Point Assertion (3). ��
Part (ii). In view of the Budget Inequality (4), suppose that the equality does not

hold, then

p̄�(x̄i − ei ) < W (q̄)z̄i + τ̄iγ ( p̄) + ρ( p̄),

that is, there exist ξ ∈ D such that

p̄(ξ) •� (x̄i (ξ) − ei (ξ)) < W (q̄)z̄i (ξ) + τ̄iγ ( p̄)(ξ) + ρ( p̄).

From the Non-Satiation Assumption C (vi) for consumer i (recalling that x̄i ∈ X̂i ,
by Claim 3), there exists xi ∈ Pi (x̄) such that xi (ξ

′) = x̄i (ξ
′) for every ξ ′ �= ξ.

Consequently, we can choose x ∈ [xi , x̄i ) close enough to x̄i so that x ∈ Bγρ

i ( p̄). But,
from the Local Non-Satiation (Assumption K (ii)), [xi , x̄i ) ⊂ Pi (x̄). Consequently,
x ∈ Bγρ

i ( p̄) ∩ Pi (x̄) �= ∅ which contradicts Part (i). ��
Claim 5 (i) ‖λ� p̄‖ = 1, that is, ρ( p̄) = 0;
(ii)

∑
i∈I W (q̄)z̄i = 0 and for all i ∈ I, τ̄iγ ( p̄) = 0;

Proof Part (i). Suppose that ‖λ� p̄‖ < 1, then ρ( p̄) 	 0. Then, for all i ∈ I, ei ∈
B̆γρ

i ( p̄) �= ∅, since ei ∈ Xi (by the Survival Assumption C (vii)) and 0 ∈ Zi , taking
τi = 0. Summing up over i ∈ I , the binding budget constraints (in Part (ii) of Claim 4)
and using the commodity market clearing condition (Claim 3) we get:

0 = p̄�
∑

i∈I
(x̄i − ei ) =

∑

i∈I
W (q̄)z̄i + (

∑

i∈I
τ̄i )γ ( p̄) + (#I)ρ( p̄). (6)

Taking above the scalar product with λ 	 0 and recalling that ρ( p̄) = (1 −
‖λ� p̄‖)11D ,

0 = λ •D

(
∑

i∈I
W (q̄)z̄i

)

+
(

∑

i∈I
τ̄i

)

λ •D γ ( p̄) + (#I)(1 − ‖λ� p̄‖)
∑

ξ∈D
λ(ξ).

Consequently, ‖λ� p̄‖ = 1, since λ •D (
∑

i∈I W (q̄)z̄i ) = 0 (by Definition 2) and
0 = λ •D γ ( p̄) (by Assumption �1(q̄)). A contradiction. ��

123



B. Cornet, R. Gopalan

Part (ii). We first claim that

0 =
∑

i∈I
W (q̄)z̄i +

(
∑

i∈I
τ̄i

)

γ ( p̄). (7)

Indeed, summing over i ∈ I, the budget inequalities (4), recalling that
∑

i∈I x̄i =∑
i∈I ei (from Claim 3), and that ρ( p̄) = 0, we get

0 = p̄�
∑

i∈I
(x̄i − ei ) ≤

∑

i∈I
W (q̄)z̄i +

(
∑

i∈I
τ̄i

)

γ ( p̄) + 0.

Taking the scalar product of both sides with λ 	 0, recalling that
∑

i∈I W (q̄)z̄i ∈
λ⊥ := {w ∈ R

D : λ · w = 0} and γ ( p̄) ∈ λ⊥ (by Assumption �1(q̄)), we get

0 = λ •D

∑

i∈I
W (q̄)z̄i + λ •D

(
∑

i∈I
τ̄i

)

γ ( p̄).

Consequently, Equality (7) holds.
Taking the scalar product of both sides of Equality (7) with γ ( p̄), we get

0 = γ ( p̄) •D

∑

i∈I
W (q̄)z̄i +

(
∑

i∈I
τ̄i

)

‖γ ( p̄)‖2.

But γ ( p̄) •D W (q̄)z̄i = 0 for all i ∈ I (from Assumption �1(q̄)); hence
(
∑

i∈I τ̄i )‖γ ( p̄)‖ = 0. Since τ̄i ≥ 0 for every i , we deduce that, for all i ∈
I, τ̄i‖γ ( p̄)‖ = 0; hence τ̄iγ ( p̄) = 0. Consequently, from Equality (7), we get∑

i∈I W (q̄)z̄i = 0. ��
To conclude the proof that the list (x̄, z̄, p̄, q̄) is an accounts clearing γ -quasi-equi-

librium, first note that
∑

i∈I x̄i = ∑
i∈I ei (Claim 3),

∑
i∈I W (q̄)z̄i = 0 (Claim 5),

for all i ∈ I, (x̄i , z̄i ) ∈ Bi ( p̄, q̄), (from the budget inequalities (4) and the fact that
ρ( p̄) = 0 and τ̄iγ ( p̄) = 0 for all i ∈ I, by Claim 5). Finally, for all i ∈ I such that
B̆γ

i ( p̄, q̄) �= ∅, then B̆γρ

i ( p̄) �= ∅ and Bγ

i ( p̄, q̄) ∩ (Pi (x̄) × Zi ) = ∅ (by Claim 4 and
the fact that ρ( p̄) = 0, from Claim 5). ��

4.2 Proof of Theorem 2 in the general case

We now give the proof of Theorem 2, without considering the additional Assumption
K, as in the previous section. We will first enlarge the strictly preferred sets of the
agents in E , as in Gale and Mas-Colell (1975), to get a new economy Ê . Then we trun-
cate the financial economy (Ê,F) by a standard argument to define a new financial
economy (Êr ,Fr ), which satisfies all the assumptions of (E,F), together with the
additional Assumption K. From the previous section, we will get an accounts clearing
γ -quasi-equilibrium of (Êr ,Fr ), and we will then check that it is also an accounts
clearing γ -quasi-equilibrium of (E,F).
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4.2.1 Enlarging the preferences as in Gale and Mas-Colell (1975)

The original preferences Pi are replaced by the “enlarged” preferences P̂i defined as
follows. For every i ∈ I, x̄ ∈ ∏

i∈I Xi we let

P̂i (x̄) :=
⋃

xi ∈Pi (x̄)

(x̄i , xi ] = {x̄i + t (xi − x̄i ) | t ∈ (0, 1], xi ∈ Pi (x̄)}.

This allows us to consider the new economy Ê = (D, �, I, (Xi , P̂i , ei )i∈I). The
next proposition shows that P̂i satisfies the same properties as Pi , for every i ∈ I,
together with the additional Local Non-satiation Assumption K (ii) (Condition (vi i)
hereafter).

Proposition 2 Under Assumption C, for every i ∈ I and every x̄ ∈ ∏
i∈I Xi one has

(i) Pi (x̄) ⊂ P̂i (x̄) ⊂ Xi ;
(ii) [Continuity] the correspondence P̂i is lower semicontinuous at x̄;

(iii) [Openness-type] for every xi ∈ P̂i (x̄) for every x ′
i ∈ Xi , x ′

i �= xi then [x ′
i , xi ) ∩

P̂i (x̄) �= ∅;
(iv) [Convexity] P̂i (x̄) is convex;
(v) [Irreflexivity] x̄i �∈ P̂i (x̄);

(vi) [Non-Satiation at Every Node] if x̄ ∈ X̂ , for every ξ ∈ D, there exists xi ∈ P̂i (x̄)

that may differ from x̄i only at the node ξ , i.e., for each ξ ′ �= ξ, xi (ξ
′) = x̄i (ξ

′);
(vii) [Local Non-Satiation] if x̄i ∈ X̂i for every xi ∈ P̂i (x̄), then [xi , x̄i ) ⊂ P̂i (x̄).

The proof of this result can be found in Gale and Mas-Colell (1975) and a detailed
argument is given in Angeloni and Cornet (2006). Note that the enlarged preferred set
P̂i may not have open values when Pi has open values (see Bich and Cornet (2004) for
a counter-example), a property that holds for the weaker openness-type assumption
(Part (i i i)).

4.2.2 Truncating the economy

The set X̂i of admissible consumptions and the set Ŵi of admissible income transfers
are defined by

X̂i : =
⎧
⎨

⎩
xi ∈ Xi : ∃(x j ) j �=i ∈

∏

j �=i

X j ,
∑

i∈I
xi =

∑

i∈I
ei

⎫
⎬

⎭
,

Ŵi : =
⎧
⎨

⎩
wi ∈ R

D : ∃zi ∈ Zi , wi = W (q̄)zi , ∃p ∈ BL(0, 1), ∃xi ∈ X̂i ,

p�(xi − ei ) ≤ wi , ∃(w j ) j �=i ∈
∏

j �=i

W (q)Zi ,
∑

i∈I
wi = 0

⎫
⎬

⎭
.
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Lemma 2 The sets X̂i and Ŵi are bounded.

Proof The set X̂i is clearly bounded since Xi is bounded below (by Assumption C (i)).
To show that Ŵi is bounded, let wi ∈ Ŵi ; then there exist xi ∈ X̂i and p ∈ BL(0, 1)

such that p�(xi − ei ) ≤ wi . Since X̂i and BL(0, 1) are compact sets, there exists
αi ∈ R

D such that αi ≤ p�(xi − ei ) ≤ wi . Using the fact that
∑

i∈I wi = 0 we also
have wi = −∑

j �=i w j ≤ −∑
j �=i α j . Thus, Ŵi is bounded for every i ∈ I. ��

We now define the “truncated economy” as follows. Since X̂i and Ŵi are bounded
(by Lemma 2), there exists a real number r > 0 such that, for every agent i ∈ I, X̂i ⊂
int BL(0, r) and Ŵi ⊂ int BD(0, r). The truncated economy (Êr ,Fr ) is then defined
as follows:

(Êr ,Fr ) = [D, �, I, (Xr
i , P̂r

i , ei )i∈I ,J , (ξ( j), V j ) j∈J , (Zr
i )i∈I ], where

Xr
i = Xi ∩ BL(0, r), Zr

i = {z ∈ Zi : W (q̄)z ∈ BD(0, r)} and

P̂r
i (x) = P̂i (x) ∩ intBL(0, r).

4.2.3 Existence of an accounts clearing γ -quasi-equilibrium of (E,F)

The existence of an accounts clearing γ -quasi-equilibrium (x̄, z̄, p̄, q̄) of (Êr ,Fr )

is then a consequence of Sect. 4.1, that is, Theorem 2 under the additional Assump-
tion K. Indeed, we just have to check that Assumption K and Assumption C, F,
made in Theorem 2 are satisfied by (Êr ,Fr ). Clearly, this is the case for the financial
Assumption F and the Boundedness Assumption K (i) (by Lemma 2); in view of
Proposition 2, this is also the case for the Local Non-Satiation Assumption K (ii) and
the Consumption Assumption C, but the Survival Assumption C (vii) that is proved
via a standard argument that we recall hereafter. Indeed, we first notice that for every
i ∈ I, ei ∈ X̂i ⊂ intBL(0, r), since ei ∈ Xi (from the Survival Assumption C (vii)).
Consequently, ei ∈ Xi ∩ intBL(0, r) ⊂ [Xi ∩ BL(0, r)] = Xr

i .
We end the proof by checking that (x̄, z̄, p̄, q̄) is also an accounts clearing γ -quasi-

equilibrium of (E,F).

Proposition 3 If (x̄, z̄, p̄, q̄) is an accounts clearing γ -quasi-equilibrium of (Êr ,Fr ),

then it is also an accounts clearing γ -quasi-equilibrium of (E,F).

Proof Let (x̄, z̄, p̄, q̄) be an accounts clearing γ -quasi-equilibrium of the economy
(Êr ,Fr ). To prove that it is also an accounts clearing γ -quasi-equilibrium of (E,F)

we only have to check that, for every i ∈ I, [Pi (x̄) × Zi ] ∩ Bγ

i ( p̄, q̄) = ∅, whenever
B̆γ

i ( p̄, q̄) �= ∅.
Assume, on the contrary, that, for some i ∈ I, B̆γ

i ( p̄, q̄) �= ∅ and [Pi (x̄) × Zi ] ∩
Bγ

i ( p̄, q̄) �= ∅, hence contains a couple (xi , zi ). Thus, for t ∈ (0, 1], let xi (t) :=
x̄i + t (xi − x̄i ) ∈ Xi and zi (t) := z̄i + t (zi − z̄i ) ∈ Zi , then (xi (t), zi (t)) ∈ Bγ

i ( p̄, q̄),
the budget set of agent i for the economy (E,F). From the Market Clearing Condi-
tions, we deduce that, for every i ∈ I, x̄i ∈ X̂i ⊂ int BL(0, r) and W (q̄)z̄i ∈ Ŵi ⊂
int BD(0, r). Consequently, for t > 0 sufficiently small, xi (t) ∈ int BL(0, r) and
W (q̄)zi (t) ∈ int BD(0, r); hence, xi (t) ∈ Xr

i := Xi ∩ BL(0, r), zi (t) ∈ Zr
i := {z ∈
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Zi | W (q̄)z ∈ BD(0, r)}, and (xi (t), zi (t)) also belongs to the budget set Bγ r
i ( p̄, q̄)

of agent i (in the economy (Êr ,Fr )). From the definition of P̂i , we deduce that
xi (t) ∈ P̂i (x̄) (since from above xi (t) := x̄i + t (xi − x̄i ) and xi ∈ Pi (x̄)). We have
thus shown that, for t ∈ (0, 1] small enough, (xi (t), zi (t)) ∈ [P̂r

i (x̄)×Zr
i ] ∩ Bγ r

i ( p̄, q̄)

(since P̂r
i (x̄) := P̂i (x̄) ∩ int BL(0, r)).

We now show that B̆γ r
i ( p̄, q̄) �= ∅ and the proof will be complete since this assertion

implies that [P̂r
i (x̄) × Zr

i ] ∩ Bγ r
i ( p̄, q̄) = ∅ (from the γ -quasi-equilibrium condition

of agent i in the economy (Êr ,Fr )) and contradicts the fact that we have shown
above it is nonempty. Indeed, since B̆γ

i ( p̄, q̄) �= ∅, it contains a point (x̆i , z̆i ) and we
notice that (1 − t)(x̄i , z̄i ) + t (x̆i , z̆i ) ∈ B̆γ r

i ( p̄, q̄) for t ∈ (0, 1] small enough, since
(x̄i , z̄i ) ∈ Bγ r

i ( p̄, q̄). ��

Appendix

Proof of Proposition 1

We prepare the proof by a lemma in which we will use the notion of the asymptotic
cone AZ of a closed convex set Z ⊂ R

J . We recall that AZ is the set of all v ∈ R
J

such that, for all z ∈ Z , z + v ∈ Z .15

Lemma 3 Let Zi (i ∈ I) be finitely many nonempty closed convex subsets of R
J , and

let C be a cone such that C ⊂ ∪i∈I Zi ; then C ⊂ ∪i∈I AZi .

Proof Let v ∈ C . Since C is a cone, for every k ∈ N, kv ∈ C ⊂ ∪i∈I Zi . Hence,
N = ∪i∈I{k ∈ N : kv ∈ Zi } and since I is finite, one of the sets {k ∈ N : kv ∈ Zi }
is infinite, say for i = 1. In other words, there exists a sequence kn → +∞ such that
knv ∈ Z1. Since Z1 is closed and convex by assumption, we deduce that, for every
z1 ∈ Z1z1 + v = limn→+∞(1 − 1

kn
)z1 + 1

kn
(knv) ∈ Z1. Consequently, from the

definition of the asymptotic cone AZ1, we have v ∈ AZ1 ⊂ ∪i∈I AZi . ��

We now come back to the proof of Proposition 1. The proof of Part (a) is straightfor-
ward and we now provide a proof of Part (b). Let (x̄, z̄, p̄, q̄) be an accounts clearing
equilibrium of (E,F).

We claim that −∑
i∈I z̄i ∈ ∪i∈I AZi . Under the first Condition (i), that is, the set

∪i∈I Zi is a vector space, we deduce that −∑
i∈I z̄i ∈ ∪i∈I Zi (since z̄i ∈ Zi for all i).

From Lemma 3, we deduce that ∪i∈I Zi ⊂ ∪i∈I AZi (since C := ∪i∈I Zi is a linear
space, hence is a cone). Under the second Condition (i i), that is, ker W (q̄) ⊂ ∪i∈I Zi ,
from the equilibrium accounts clearing condition we deduce that −∑

i∈I z̄i ∈ ker
W (q̄) ⊂ ∪i∈I Zi . From Lemma 3, we deduce that ker W (q̄) ⊂ ∪i∈I AZi (since
C :=ker W (q̄) is a cone). This ends the proof of the claim.

15 The proof carries on under the following weaker assumption that ker W(q) ∩ −cone(
∑

i∈I Zi ) ⊂
∪i∈I Zi .
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From the above claim, there exists i0 ∈ I such that −∑
i∈I z̄i ∈ A(Zi0). Consider

the profile of portfolios ẑ = (ẑi )i∈I defined by ẑi0 = z̄i0 − ∑
i∈I z̄i and ẑi = z̄i , for

all i �= i0. Clearly, ẑi0 ∈ Zi0 + AZi0 ⊂ Zi0 from the definition of the asymptotic
cone AZi0 . Hence,

∑
i∈I ẑi = 0, for all i ∈ I, ẑi ∈ Zi , and W (q̄)ẑi = W (q̄)z̄i (since∑

i∈I W (q̄)z̄i = 0 from the equilibrium accounts clearing condition). Then one easily
checks that (x̄, ẑ, p̄, q̄) is a portfolio clearing equilibrium of (E,F). ��

Proof of the lower semicontinuity of �i for i ∈ I

In this section we provide a proof of the lower semicontinuity of �i for all i ∈ I, that
is, Claim 2 (iii) (the proof for i = 0 having already been given).

We prepare the proof with the following claim:

Claim 6 For every i ∈ I :
(a) The set Fi := {(p, x) ∈ BL × ∏

i∈I Xi : xi ∈ Bγρ

i (p)} is closed;
(b) the set {(p, xi ) ∈ BL × Xi : xi ∈ B̆γρ

i (p)} is open (in BL × Xi ).

Proof Part (a). Let (pn, xn) → (p, x) be such that xn
i ∈ Bγρ

i (pn). For all n, there
exists zn

i and τ n
i such that

xn
i ∈ Xi , zn

i ∈ Zi , τ n
i ∈ [0, 1], pn�(xn

i − ei ) ≤ W (q̄)zn
i + τ n

i γ (pn) + ρ(pn).

Since the set W (q̄)Zi is bounded, without any loss of generality, we can assume that
the sequence (W (q̄)zn

i , τ n
i ) converges to some element (wi , τi ) ∈ R

D ×[0, 1]. More-
over wi ∈ W (q̄)Zi since W (q̄)Zi is closed (by Assumption F); hence wi = W (q̄)zi

for some zi ∈ Zi . Thus, in the limit, since both mappings γ and ρ are continuous, we
get xi ∈ Xi , zi ∈ Zi , τi ∈ [0, 1], p�(xi − ei ) ≤ W (q̄)zi + τiγ (p) + ρ(p). Thus
xi ∈ Bγρ

i (p). ��
Part (b). Let ( p̄, x̄i ) such that x̄i ∈ B̆γρ

i ( p̄), that is, there exists zi ∈ Zi , and
τi ∈ [0, 1] such that p̄�(x̄i −ei ) � W (q̄)zi +τiγ ( p̄)+ρ( p̄). Clearly, this inequality
still holds (for the same zi and τi ) when (p, xi ) belongs to some neighborhood N of
( p̄, x̄i ) small enough, recalling that the mappings ρ and γ are both continuous. This
shows that xi ∈ B̆γρ

i (p) for every (p, xi ) ∈ N . ��
To show the lower semicontinuity of �i for i ∈ I at ( p̄, x̄), let U be an open

subset of R
L such that �i ( p̄, x̄) ∩ U �= ∅, we need to show that �i (p, x) ∩ U �= ∅

when (p, x) belongs to some open neighborhood N of ( p̄, x̄). For the proof, we will
distinguish the following three cases:

Case 1 x̄i /∈ Bγρ

i ( p̄) and B̆γρ

i ( p̄) = ∅. Recall that �i ( p̄, x̄) ∩ U �= ∅. From the
definition of �i one has �i ( p̄, x̄) = {ei }; hence ei ∈ U . The proof will be complete
if we show that �i (p, x) ∩ U �= ∅ for every (p, x) ∈ �i := {(p, x) : xi /∈ Bγρ

i (p)},
which is an open neighborhood of ( p̄, x̄) (by Claim 6). In fact we only need to show
that ei ∈ �i (p, x) since ei ∈ U . We distinguish two cases. If B̆γρ

i (p) = ∅, then
�i (p, x) = {ei }, from the definition of �i . If B̆γρ

i (p) �= ∅, then �i (p, x) = Bγρ

i (p)

(from the definition of �i ) and it contains ei since p�(ei − ei ) ≤ W (q̄)0 +0 +ρ(p),

recalling that ei ∈ Xi , 0 ∈ Zi , 0 ∈ [0, 1] (by Assumptions C and F) and ρ(p) ≥ 0.
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Case 2 x̄i /∈ Bγρ

i ( p̄) and B̆γρ

i ( p̄) �= ∅. Recall that �i ( p̄, x̄) ∩ U �= ∅. From the
definition of �i , one has �i (p, x) = Bγρ

i (p) for all (p, x) in the set

�′
i :=

{

(p, x) ∈
∏

i∈I
Xi × BL : xi /∈ Bγρ

i (p) and B̆γρ

i (p) ∩ U �= ∅
}

,

and we now show that �′
i is an open neighborhood of ( p̄, x̄). Indeed, first �′

i is open
(by Claim 6). Second, to show that �′

i contains ( p̄, x̄), we recall that x̄i /∈ Bγρ

i ( p̄) (by
Assumption of Case (ii)) and it only remains to show that B̆γρ

i ( p̄) ∩ U �= ∅; indeed,
choose x̆i ∈ B̆γρ

i ( p̄) �= ∅ (by Assumption of Case (ii)), and xi ∈ Bγρ

i ( p̄) ∩ U =
�i ( p̄, x̄) ∩ U �= ∅; then one sees that, for t > 0 small enough, t x̆i + (1 − t)xi ∈
B̆γρ

i (p) ∩ U .

Consequently, �i is lower semicontinuous at ( p̄, x̄) since, for all (p, x) ∈ �′
i (an

open neighborhood of ( p̄, x̄)) one has ∅ �= B̆γρ

i (p)∩ U ⊂ Bγρ

i (p)∩ U = �i (p, x)∩U.

Case 3 x̄i ∈ Bγρ

i ( p̄). Recall that �i ( p̄, x̄) ∩ U �= ∅; hence we can choose x̃i so that

x̃i ∈ �i ( p̄, x̄) ∩ U = B̆γρ

i ( p̄) ∩ Pi (x̄) ∩ U.

From Claim 6, there exists an open neighborhood M of p̄ and an open neighbor-
hood V of x̃i such that, for every p ∈ M , one has ∅ �= V ⊂ B̆γρ

i (p) ∩ U . Noticing
that Pi (x̄) ∩ V �= ∅ (since it contains x̃i ), the lower semicontinuity of Pi at x̄ (by
Assumption C) implies that Pi (x) ∩ V �= ∅ for every x in some open neighborhood
N of x̄ . Consequently

∅ �= Pi (x) ∩ V ⊂ Pi (x) ∩ B̆γρ

i (p) ∩ U ⊂ Bγρ

i (p) ∩ U for every (p, x) ∈ M × N .

Noticing that �i (p, x) ⊂ Bγρ

i (p) (from its definition) we thus deduce that
�i (p, x) ∩ U �= ∅ for every (p, x) in the neighborhood M × N of ( p̄, x̄). ��

Proof of Lemma 1

We let W be the closed cone spanned by ∪i∈I W (q̄)Zi , which is a linear space by
Assumption FA. For every p ∈ R

L , we let ϕ(p) = −p�p + λ·(p�p)

‖λ‖2 λ,w(p) =
projWϕ(p) and γ (p) = projW⊥ϕ(p).16

The following claim shows that the mapping γ satisfies Assumption �1(q̄) of
Lemma 1, together with other properties that will allow us to show that Assumption
�2(q̄) also holds.

16 When X is an (arbitrary) subset of R
D , we let X⊥ := {w ∈ R

D : w · x = 0 for all x ∈ X}. When W is
a linear subspace of R

D and ϕ ∈ R
D, we denote by projWϕ (resp. projW⊥ϕ) the orthogonal projection

of ϕ on W (resp. on W⊥), that is, the unique w̄ ∈ W (resp. γ̄ ∈ W⊥) such that ϕ − w̄ ∈ W⊥ (resp.
ϕ − γ̄ ∈ W).
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Claim 7 The mapping p → γ (p) is continuous on R
L and for all p ∈ R

L , one has

(i) γ (p) ∈ λ⊥ ∩ W⊥ ⊂ λ⊥ ∩ (∪I∈I W (q̄)Zi )
⊥;

(ii) −p�p � ϕ(p) = w(p) + γ (p) if p �= 0;
(iii) If p �= 0, there exists i0 such that, for τ > 0 small enough

p�(−τp) � W (q̄)zi0 + τγ (p) for some zi0 ∈ Zi0 .

Proof The continuity of the mapping γ : R
L → R

D is a consequence of the continuity
of the mappings ϕ (for fixed λ) and projW⊥ .

Part (i). The proof that λ · ϕ(p) = 0 is done by simple calculation from the defi-
nition of ϕ(p). Recalling that w(p) ∈ W ⊂ W (q̄)ZF ⊂ λ⊥ (from the definition of
λ) we deduce that γ (p) = ϕ(p) − w(p) also belongs to λ⊥. Finally, γ (p) ∈ W⊥ ⊂
(∪I∈I W (q̄)Zi )

⊥ since ∪I∈I W (q̄)Zi ⊂ W .
Part (ii). If p �= 0, notice that p�p > 0; hence λ · (p�p) > 0 (since λ 	 0) and

one has −p�p − ϕ(p) = −λ·(p�p)

‖λ‖2 λ � 0. Thus, −p�p � ϕ(p) = w(p) + γ (p).
Part (iii). Since w(p) belongs to W , which is the closed cone spanned by

∪I∈I W (q̄)Zi , then w(p) = limn→∞ tnwn for some sequence (tn) ⊂ R+ and (wn) ⊂
∪I∈I W (q̄)Zi . By eventually considering a subsequence, we can assume that, for
all n, wn belongs to W (q̄)Zi , for some given i independent of n, say i = 1; thus
wn = W (q̄)zn

1 for some zn
1 ∈ Z1. From Part (i i), we deduce that there exists an integer

n0, such that, for n ≥ n0 − p�p � tnwn +γ (p). Fix n = n0, thus, for τ ∈ (0, 1/tn0 ],
one has p�(−τp) � W (q̄)(τ tn0 zn0

1 ) + τγ (p), and z1 := τ tn0 zn0
1 ∈ Z1 (since Z1 is

convex, 0 ∈ Z1, zn0
1 ∈ Z1, 0 ≤ τ tn0 ≤ 1). ��

We now end the proof of Lemma 1 by showing that xi0 := ei0 − τp ∈ B̆γ

i0
(p)

for τ > 0 small enough (where i0 is defined as in the above claim). Let r > 0 such
that B(ei0 , r) ⊂ Xi0 (which is possible since ei0 ∈ int Xi0 from the Strong Survival
Assumption S). Then, for τ > 0 small enough (as in the above claim) and such that
τ ≤ 1 and τ‖p‖ ≤ r one has xi0 := ei0 − τp ∈ BL(ei0 , r) ⊂ Xi0 (since ‖τp‖ ≤ r ),
and p�(xi0 − ei0) = −p�τp � W (q̄)zi0 + τγ (p), with zi0 ∈ Zi0 , and τ ∈ [0, 1].

��
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