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Abstract

Rules of k names are frequently used methods to appoint individuals to o¢ ce.

They are two-stage procedures where a �rst set of agents, the proposers, select k

individuals from an initial list of candidates, and then another agent, the chooser,

appoints one among those k in the list. The list of k names is often arrived at

by letting each of the proposers vote for a �xed number q of candidates, and then

choosing the k most voted ones. We can then speak of q-rukes of k names. We study

the performance of q-rules of k names from two complementary perspectives. One

of them focuses on the strategic behavior of agents operating under these rules, for

each speci�c state of the world. In that direction, we provide partial characterization

results for the strong Nash equilibria of the games induced by v-rules of k names.

Our second perspective builds on what we learn about equilibria for each stage,

but addresses a more aggregate question: what is the performance of each of these

rules "in expected terms"? More speci�cally, we characterize the utilitarian and

egalitarian optimal parameters of these rules (k,v) as functions of players´ degrees

of risk aversion. The paper generalizes and extends results in our �rst exploration

of the topic (Barberà and Coelho, 2010).
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1 Introduction

Appointing people to o¢ ce is one of the main ways how the powerful exert their in�uence

in society. But the ability to appoint o¢ cers is often limited in democracies.

Even the President of the United States has to submit his proposals for cabinet mem-

bers, for supreme court judges and for many other appointments to the approval of the

legislators. In other types of societies, or for other types of appointments, the power to

choose one�s candidate for a post may be almost unlimited. But even this power is often

challenged.

In many historical circumstances, di¤erent groups have fought and competed for the

ability to appoint people to important positions. The history of the Roman Church is

full of instances where the secular rulers and the clergy have struggled to decide who

had the possibility of appointing new bishops. In many European countries, University

Rectors have been appointed sometimes by the Government, sometimes by the University

community itself, sometimes by combinations of inputs from both.

In this paper we study a class of methods that allows several agents to share the power

to appoint. These methods are widely used in the present , and were also used in the

past. We call them rules of k names, and they work as follows. The set of deciders is

divided into two groups: the proposers and the choosers. Proposers consider the set of

all candidates to a position and screen k of them. Then, the choosers pick the appointee

out of these k names.

The use of rules of k names is pervasive. Screening a few candidates before one is �nally

chosen is the standard practice in recruiting for all kinds of jobs. Many institutions choose

their o¢ cers from a short list. Sometimes the use of these methods is mandated by law,

while in other cases it is just the result of an agreement. And there are many di¤erent

reasons for these two-stage procedures to be used. They allow for a division of labor

that may be based on di¤erent degrees of expertise. They also allow dividing the power

to appoint between the di¤erent sides. In this paper we emphasize the latter: we shall

think of proposers and of choosers as two di¤erent groups, whose relative power may vary

depending on the exact form of the rule.

Indeed, rules of k names can vary, depending on the composition of the sets of proposers

and choosers, on the value of k, and also on the rules that the di¤erent participants adopt

when deciding how to choose a list of candidates, or one candidate among many.
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In this paper we make a number of simplifying assumptions that are, in fact, also

adopted in many practical cases. The �rst one is that we consider only the case where

the chooser is a single agent. This excludes the case where the choice from a restricted

list is still a collective matter. But it is in fact a characteristic of many actual rules, as

it is often the case that the chooser is one single person, like the president of a country,

or some government appointed representative. Our second simplifying assumption is that

proposers, when screening a list of k names, use a voting rule in the following form: each

one submits a list of q candidates (for v < k), and then the k most voted candidates get

into the list. Again, one can think of more general methods to select the k names, but

the ones we consider are simple and frequently used.

Our rules are therefore fully speci�ed once we have the number of potential candidates,

the number of proposers, the size k of the list and the number v of votes that each proposer

can cast.

Our purposes are twofold. On the one hand, we would like to understand the intricacies

of the decision making process that will take place, under any given rule and for every

speci�c society, as de�ned by the preferences of di¤erent proposers and those of the

chooser. After a brief consideration of the simple case where there is only one proposer,

we study the cooperative game arising when there are several proposers, and analyze the

characteristics of its strong Nash equilibria. For the most general case, we cannot achieve

a complete characterization of equilibria, nor reach an unequivocal existence result. Yet,

our analysis, in the form of partial results and a variety of examples, is quite rich. It

shows how sophisticated can the behavior of agents be under these rules, it identi�es

those variables that are crucial to identify the potential equilibria, and to understand the

types of balance of power arising between the proposers and the chooser. In addition, we

study some speci�c cases of interest for which we can guarantee the existence of equilibria

and to characterize them. Even if limited, these special cases will prove useful for our

second purpose.

Our second purpose is to evaluate the performance of di¤erent rules of k names from

an ex ante point of view, by computing the utility that di¤erent participants in the

decision process may expect. This would allow us to eventually arbitrate among di¤erent

proposals for speci�c rules of k names, on the basis of their �average�performance and of

the �average�satisfaction they can provide to di¤erent parts of society. For that purpose,
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we need to make di¤erent modelling decisions. One is on how to measure the utility

of individuals, and how to calculate the eventual expected utility. In the absence of

additional information, we consider that agents have utility functions whose argument is

the ranking of alternatives, and treat them as Von Neumann-Morgenstern utility functions

over lotteries. Ordinarily, they all express that getting the �rst ranked is better than the

second ranked alternative, second is better than third, etc...Since the choice of any rule

under uncertain preferences associates this rule with a lottery over the rankings of the

chosen candidates. Under di¤erent distributional assumptions on the possible preferences

of agents, we can compute the expected ranking of the chosen candidate, as well as

the expected utilities for the chooser and for the proposers. Then the cardinal aspects

introduced by our choice of utility functions will allow us to examine the role of di¤erent

attitudes toward risk on the evaluation of alternative choices of the parameters k and q

that characterize them.

In addition to the choice of a distribution and of a Bernoulli utility function, these

calculations entail another consideration, that enriches them but also makes them more

complicated. These are considerations about the timing at which expected utility calcula-

tions are carried out. Our leading assumption there is that the preferences that individuals

will have in any realization of society are unknown by the planner, but that agents will

have complete information about their preferences and those of their opponents at choice

time, and will thus vote strategically. Because of that, in our main scenario, the outcome

to be taken into account is the equilibrium outcome corresponding to each realization of

the preferences of proposers and choosers.

A second scenario that we consider, for comparison with the full information one, is

that where agents will be ignorant of the preferences of the rest of players, and just know

their own preferences at play time.

Since the equilibrium analysis of the general case is quite ambiguous, we concentrate

attention in two cases that, although limited in scope, provide quite a richness of results.

One is the case of homogeneous proposers, i.e., the one where all proposers share the

same preferences. With some quali�cations, this case is very similar to the one where

the proposer would be a single individual. The second special case is that of polarized

societies, i.e., those where a group of proposers hold the same opinion, and the rest of

them exhibit the opposite preferences. For these two cases, strong Nash equilibria for our
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games always exist

Our results on the expected utility consequences of choosing a given q-rule of k names

over others allows us to compare the di¤erent choice of rules from an ex ante perspective,

and to investigate two di¤erent questions.

One question relates to the choice of one of the roles, as a chooser or as a proposer,

that individuals would make if allowed to. Here, there is a �rst mover advantage for the

proposer, who can also count on a smaller variance in the distribution of chosen can-

didates. Large enough values of k can counteract this advantage. As a result, we can

identify those utility classes and parameter values under which all agents would prefer

to be the proposers, all would prefer to be the choosers, as well as cases where di¤erent

agents would prefer to take di¤erent roles. The other use of our expected utility calcu-

lations is to perform some normative analysis. In the homogeneous case, choosing a rule

that maximizes the weighted sum of expected utilities of the chooser with that of one

proposer is equivalent to choosing one that equalizes as much as possible the weighted

expected utilities of proposers and choosers. For the polarized case, the comparison is

more complex.

The paper is organized as follows. In the next section, we formally de�ne the v-

rules of k names and we present two key parameters of screening rules that will allow us

to partially characterize the equilibria of our games, as they are related to the sizes of

coalitions with decision powewr. In Section 3 we discuss the game induced by v-rules of k

names and we analyze the characteristics of its strong Nash equilibria. Then, in Section 4

we discuss two salient special cases where equilibria always exist, and we shall use in the

following Section. Section 5, then, contains our expected utility calculations for di¤erent

v-rules of k names under di¤erent alternative hypothesis, the discussion regarding the

individual preferences over the role of chooser and proposer, and that of normative choice

of rules. Brief concluding remarks follow in Section 6.

2 Rules of k names. The role of screening rules.

In this section we formally de�ne rules of k names. We observe that, in addition to other

structural features, like the number of proposers, the number of candidates and the size k

of proposed candidates, a full speci�cation of a rule of k names also requires to de�ne the
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screening rules by which the proposers decide what names go into the list. In principle,

this method could remain unspeci�ed, or be rather complicated. But in actual practice

simple and well speci�ed screening rules are set. Basically, proposers are allowed to vote

for a number v of candidates, and then the v most voted ones are selected (with a tie

break if needed). Because of this, the section is devoted to formalize this simple family

of screening rules, and to study how we can (partially) measure the power of individuals

and coalitions when it come to choose a list of k names.

Notation 1 Let A be the �nite set of candidates. We denote by Ak � fB � Aj#B = kg
the set of all possible subsets of A with cardinality k where #B stands for the cardinality

of B and B � A means that B is contained in A. Denote by N � f1; :::; ng the �nite
set of committee members, the proposers, that selects a set B from Ak from which an

individual that does not belong to N; the chooser, selects a candidate for the o¢ ce.

Notation 2 Let W be the set of all strict orders (transitive1, asymmetric2, irre�exive3

and complete4) on A. Each member i 2 N [ fchooserg has a strict preference �i2 W:
For any nonempty subset B of A; B � An;, we denote by �(B;�i) � fx 2 Bjx �i y for
all y 2 Bnfxgg the preferred candidate in B according to preference �i :

De�nition 1 Let MN � M1 � ::: � Mn with Mi = Mj = M for all i; j 2 N where

M is the space of actions of a proposer in N: Given k 2 f1; 2; :::;#Ag; a screening
rule for k names is a function Sk : MN �! Ak associating to each action pro�le

mN � fmigi2N 2MN the k-element set Sk(mN):

In words, a screening rule for k names is a voting procedure that selects k alternatives

from a given set, based on the actions of the proposers. These actions may consist

of single votes, sequential votes, the submission of preference of rankings, the �lling of

ballots, etc...For example, if the actions in MN are casting single votes then M � A: If
the actions in MN are submissions of strict preference relation then M � W .

De�nition 2 The rule of k names can be described as follows: given a set of candidates

for o¢ ce, a committee chooses k members from this set by using a screening rule for k

1Transitive: For all x; y; z 2 A : (x � y and y � z) implies that x � z:
2Asymmetric: For all x; y 2 A : x � y implies that :(y � x):
3Irre�exive: For all x 2 A;:(x � x):
4Complete: For all x; y 2 A : x 6= y implies that ( y � x or x � y):
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names. Then a single individual from outside the committee selects one of the listed names

for the o¢ ce.

Once we have these general de�nitions, we can become more speci�c. A we have al-

ready observed, it is usual in practice to specify the number of votes that each proposer

can cast, and then use plurality. Our next de�nitions refers to this particular and im-

portant subclass of screening rules, and to the rules of k names that use them. We shall

concentrate on this class of rules from now on.

De�nition 3 A screening rule for k names is a v�votes screening rule for k names
if it can be described as follows: each proposer votes for v candidates and the list has

the names of the k most voted candidates, with a tie breaking rule when needed. The

parameters v and k satisfy v � k < #A and v:n � k and the tie breaking criterion is

established by strict ordering of alternatives.5

De�nition 4 The v�rule of k names can be described as follows: given a set of candi-
dates for o¢ ce, a committee chooses k members from this set by using a v�votes screening
rule for k names. Then a single individual from outside the committee selects one of the

listed names for the o¢ ce.

In a preceding paper (Barberà and Coelho, 2010) we already noticed that there is a

substantial di¤erence between rules of k names, depending on the power that screening

rules assign to majorities. Speci�cally, there are screening rules where the majority can

always impose the full list, if it agrees to do so, and others where its power is more

limited. We now introduce a formal de�nition that marks this di¤erence, and remark on

its implications in the case of v-rules of k names.

De�nition 5 (Barberà and Coelho, 2010) We say that a screening rule Sk :MN �! Ak

is majoritarian if and only if for every set B 2 Ak there exists m 2 M such that for

every strict majority coalition C �N and every pro�le of the complementary coalition

mNnC 2MNnC we have that Sk(mNnC ;mC) = B provided that mi = m for every i 2 C.
5Notice if the number of candidates with positive votes is lower than k, the tie breaking criterion need

to be used to break the ties among candidates with zero vote.
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In words, we say that a screening rule is majoritarian if and only if for every set with

k candidates there exists an action such that every strict majority coalition of proposers

can impose the choice of this set provided that all of its members choose this action.

Remark 1 Notice that among all v-rules of k names, those with v=k use majoritarian

screening rules, and for any other v, they are non-majoritarian. Also notice that the

de�nition of majoritarian screening rule states that it is enought that all proposers in the

majoritarian coalition adopt the same strategy to exert their power. Clearly, this property

can be met by the majoritarian k-rules for k names, since it will su¢ ce that all proposers

vote for the same set. As we shall see, under non-majoritarian screening rules, proposers

will have to exert their power by coordinating on more complex combinations of votes.

The concept of a majoritarian screening rule is an example of how we may approach a

de�nition of the power of di¤erent sets of proposers. This will be an important consider-

ation for our general analysis. Indeed, when a rule is majoritarian, any majority coalition

can guarantee that, if it wants, it can impose the full list. In more general terms, we can

inquire, for any rule, whether majoritarian or not, what is the size of coalitions that can

indeed guarantee the inclusion of a full list, if its members agree upon it. Similarly, we

can also look for milder forms of power. For example, by determining what coalitions can

at least guarantee the inclusion of one candidate of their choice within the list.

We shall now introduce two parameters that one can de�ne for any screening rule for

k names, and that will be useful to characterize equilibria in the strategic game that we

study in the coming section. Notice that, in general terms, these parameters will depend

very much on the screening rules to be used. Luckily, in the case of v-rules of k names,

they become easy to compute, and we provide an explicit formula for their values. Notice

that our de�nitions are closely linked to that of e¤ectivity functions studied by, among

others, Peleg (1984), Abdou and Keiding (1991) and Sertel and Sanver (2004). These

concepts of e¤ectivity refer to the ability of agents to ensure an outcome, under the given

rule.

De�nition 6 Given a screening rule for k names Sk :MN �! Ak, let q1 be the minimumbq such that for any x 2 A and any coalition C �N of voters with#C � bq implies that there
exists mC 2MC such that for every pro�le of the complementary coalition mNnC 2MNnC

we have x 2 Sk(mC ;mNnC).
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In words, q1 is the minimum bq such that for every candidate there exists an action
pro�le such that any coalition with size higher or equal to bq can impose the inclusion of
this candidate among the k chosen candidates.

De�nition 7 Given a screening rule for k names Sk :MN �! Ak, let qk be the minimumbq such that for any B 2 Ak and any coalition C �N of voters with #C � bq implies
that there exists mC 2 MC such that for every pro�le of the complementary coalition

mNnC 2MNnC we have that Sk(mC ;mNnC) = B.

In words, qk is the minimum bq such that for every set with k candidates any coalition,
with size higher or equal to bq; can impose the choice of this set.
Remark 2 qk

k
� q1 � qk � n; q1 > n � qk and qk � dn+1

2
e, where dn+1

2
e stands for the

superior integer of n+1
2
: In particular, if the screening rule is majoritarian then q1 = qk =

dn+1
2
e:

Our next proposition provides the explicit formulas for our parameters, in the case of

v-votes screening rules.

Proposition 1 If a screening rule for k names is a v�votes screening rule for k names
then qk = d kn

(k+v)
e + I(bvd

kn
(k+v)

e
k

c � n � d kn
(k+v)

e) and q1 = d vn
(k+v)

e + I( vn
(k+v)

= d vn
(k+v)

e);
where I denotes the indicator function.

The proofs of the propositions are in the Appendix.

Remark 3 The parameter qk is a non-increasing function on the parameter v of the

v�votes screening rule for k names and non-decreasing function on k.

Remark 4 The parameter q1 is a non-decreasing function on the parameter v in the

v�votes screening for k names and non-increasing function on k.

Example 1 Here we apply Proposition 1 to compute the parameters q1 and qk for all six

screening rule for k names documented by Barberà and Coelho (2010). We begin by the

four that belong to the family of v-votes screening rule for k names.

1) Screening 3 names by 3-votes screening rule for 3 names: Each proposer votes for three

candidates and the list has the names of the three most voted candidates, with a tie-break
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when needed. It is used in the election of Irish Bishops and that of Prosecutor-General in

most of Brazilian states.

q1 = dn+12 e qk = dn+12 e

2) Screening 5 names by 3-votes screening rule for 5 names: Each proposer votes for three

candidates and the list has the names of the �ve most voted candidates, with a tie breaking

rule when needed. It is used in the election of the members of Superior Court of Justice

in Chile.

q1 = d3n8 e+ I(
3n
8
= d3n

8
e) qk = d5n8 e+ I(b

3d 5n
8
e

5
c � n� d5n

8
e)

3) Screening 3 names by 2-votes screening rule for 3 names: Each proposer votes for

two candidates and the list has the names of the three most voted candidates, with a tie

breaking rule when needed. It is used in the election of the members of Court of Justice

in Chile.

q1 = d2n5 e+ I(
2n
5
= d2n

5
e) qk = d3n5 e+ I(b

2d 3n
5
e

3
c � n� d3n

5
e)

4) Screening 3 names by 1-vote screening rule for 3 names: Compute the plurality score of

the candidates and include in the list the names of the three most voted candidates, with

a tie breaking rule when needed. It is used in the election of rectors of public universities

in Brazil.

q1 = dn4 e+ I(d
n
4
e = dn

4
e) qk = d3n4 e+ I(b

d 3n
4
e

3
c � n� d3n

4
e)

The other two screening rules for k names documented by Barberà and Coelho (2010) do

not belong to the family of v-votes screening rules for k names, but they are majoritarian:

5) 1-vote sequential plurality: The list is made with the names of the winning candidates

in three successive rounds of plurality voting. It is used in the election of English Bishops.

q1 = dn+12 e qk = dn+12 e

6) Screening 3 names by 3-vote sequential strict plurality: this is a sequential rule adopted

by the Brazilian Superior Court of Justice to select its members. Each proposer votes

for three candidates from a set with six candidates, and if there are three candidates with

more votes than half of the total number of voters, they will form the list. It is used in

the election of the members of the Brazilian Superior Court of Justice.

q1 = dn+12 e qk = dn+12 e
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The bounds established in de�nitions 6 and 7 are not as tight as they could be, because

they are common to all alternative sets or candidates. We have proposed them for clarity,

but we can now tightehn them a bit more, in order to take into account that tie-breaking

rules or other assymetries that can change the bounds depending on the alternative or

the set under consideration. This is the purpose of the next two de�ntions and remarks.

De�nition 8 Given a screening rule for k names Sk : MN �! Ak and x 2 A, let

q1(x) be the minimum bq such that for any coalition C �N of voters with #C � bq implies
that there exists mC 2 MC such that for every pro�le of the complementary coalition

mNnC 2MNnC we have x 2 Sk(mC ;mNnC).

In words, q1(x) is the minimum bq such that there exists an action pro�le such that any
coalition with size higher or equal to bq can impose the inclusion of x among the k chosen
candidates.

De�nition 9 Given a screening rule for k names Sk : MN �! Ak and X 2 Ak, let

qk(X) be the minimum bq such that for any coalition C �N of voters with #C � bq implies
that there exists mC 2 MC such that for every pro�le of the complementary coalition

mNnC 2MNnC we have that Sk(mC ;mNnC) = X.

In words, qk(X) is the minimum bq such that for any coalition, with size higher or equal
to bq; can impose the choice of X.
Remark 5 Consider any v-votes screening rule for k names and any x 2 A; if x is one the
k-top candidates according to the tie breaking criterion then q1(x) = q1 or q1(x) = q1� 1 .
If x is not one of k-top candidates according to the tie breaking criterion then q1(x) = q1.

Remark 6 Consider any v-votes screening rule for k names and any X 2 Ak; if the set X
is formed by the k-top candidates according to the tie breaking criterion then qk(X) = qk

or qk(X) = qk�1. If X is not formed by the k-top candidates according to the tie breaking

criterion then qk(X) = qk.

3 The constrained chooser game

In this section, we model a game that represents the possible strategic interaction among

the proposers, in view of their preferences and those of the chooser, and we analyze
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its strong Nash equilibria. Although we cannot provide a full characterization of such

equilibria in the most general case, the picture that emerges from our result in one of

richness, regarding the strategic possibilities that are open to the di¤erent proposers.

We start by providing a set of necessary conditions that any equilibrium must ful�ll

(Proposition 2). Then we provide an example of the way in which these conditions help

us to locate an equilibria (Example 2). Yet, we must acknowledge that these conditions

are not su¢ cient, as shown by Example 5. Moreover, the role of tie breaking rules is quite

disturbing, since they may be crucial to determine whether the equilibrium is unique (

Example 3), or even whether it exists (Example 6). Another bothersome feature is that

the parity of the number of proposers does matter when discussing the uniqueness of

equilibria ( Example 4).

The above quali�cations, and other comments arising along their discussion, are meant

to emphasize that a full characterization of equilibria is not an easy matter. Yet other

propositions in the section allow us to identify important cases where one can guarantee

the existence and the uniqueness of equilibria. For example, if enough proposers agree

with the chooser (Proposition 3), or if enough agreement among the proposers, as re�ected

in the existence of a Condorcet winner with quali�ed majority (propositions 4 and 5).

In addition to all these results and examples regarding equilibria, we can also o¤er

some comparative static results on the role of parameter v (Proposition 6 and Example

7). Let us now de�ne our game formally.

De�nition 10 (Barberà and Coelho, 2010) Given k 2 f1; 2; :::;#Ag, a screening rule
for k names Sk : MN �! Ak and a preference pro�le �� f�igi2N[fchooserg 2 WN+1; the

Constrained Chooser Game can be described as follows: It is a simultaneous game

with complete information where each player i 2 N chooses a strategy mi 2 Mi. Given

mN � fmigi2N 2 MN, Sk(mN) is the chosen list with k names and the winning candidate

is �(Sk(mN);�chooser).

In the Constrained Chooser Game, the chooser �s strategy set is restricted to a single

element. In that sense, we could say that he is not an active player. Speci�cally, we take

it that the chooser will simply select that candidate that is best for him among those that

he will be presented with. Thus, the chooser�s preferences will condition the outcome

function, and therefore will have an impact on the equilibrium play of the proposers. But
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we exclude the possibility that he announces a choice rule that is not in accordance to his

preferences, which are known in each game.

We choose to analyze the set of strong Nash equlibria of this game. This is consistent

with the idea that proposers have complete information about their preferences and those

of the chooser, and that they must �nd ways to cooperate among themselves, in order to

come up with a favorable list.

De�nition 11 (Barberà and Coelho, 2010) Given k 2 f1; 2; :::;#Ag, a screening rule
for k names Sk : MN �! Ak and a preference pro�le �� f�igi2N[fchooserg 2 WN+1;

a joint strategy mN � fmigi2N 2 MN is a pure strong Nash equilibrium of the

Constrained Chooser Game if and only if, given any coalition C �N; there is no
m

0
N � fm0

igi2N 2 MN with m
0
j = mj for every j 2 NnC such that �(m

0
N;�chooser) �i

�(mN;�chooser) for each i 2 C:

De�nition 12 A candidate is a chooser�s `-top candidate if and only if he is among

the ` best ranked candidates according to the chooser�s preference.

De�nition 13 A candidate x 2 B � A is a p-Condorcet winner over B if#fi 2N jx �i
yg � p for any y 2 Bnfxg6. In words, a candidate is the p-Condorcet Winner over a
subset of A if and only if it is beats any other alternative that belongs to this subset by

at least a p-majority. It is important to note that the chooser�s preferences over candi-

dates are not taken into account in this de�nition. We say that a candidate is a strong

Condorcet winner if and only if n
2
�Condorcet winner.

Proposition 2 below provides necessary conditions of a candidate to be a strong Nash

equilibrium outcome of the Constrained Chooser Game

Proposition 2 Consider a v-rules for k names, if candidate x is a strong Nash equi-

librium outcome of the Constrained Chooser Game then it satis�es the following three

conditions

1. It is a chooser�s (#A� k + 1)-top candidate.
6Where #fi 2 Njx �i yg stands for the cardinality of fi 2 Njx �i yg and B � A means that B is

contained in A:
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2. If y is a chooser�s (#A�k + 1)-top candidate then #fi 2 N jy �i xg < qk(Y ) for

any Y 2 Ak such that y is the chooser best candidate in Y .

3. If y is the chooser�s 1-top candidate then #fi 2 N jy �i xg < q1(y).

The following example illustrates how Proposition 2 can be useful for identifying the

set of equilibrium outcomes.

Example 2 Let A = fa; b; c; d; eg and let N = f1; 2; 3g. Suppose that each proposer votes
for one candidate and the three most voted candidates form the list , with a tie breaking

rule when needed: b � a � e � d � c. .The preferences of the chooser and the committee
members are as follows:

Preference Pro�le

Proposer 1 Proposer 2 Proposer 3 Chooser

e e e a

d d d b

c c b c

a a a d

b b c e

Notice that , we have that q1(x) = 1 for any x 2 A and qk(X) = 3 for any X 2 Ak:
The �rst step in describing the equilibrium outcomes is to identify those candidates that

satisfy the three necessary conditions established in Proposition 2.

Inspecting the preference pro�le above and recalling that #A = 5, we have that:

1. Condition 1: fa; b; cg.
2. Condition 2: fa; b; c; d; eg:
3. Condition 3:fa; e; dg
So, only candidate a that satis�es all three conditions. Now we have to check if there is

a strategy pro�le that satis�es candidate a as a strong Nash equilibrium candidate. The

following strategy pro�le sustains a as a strong Nash equilibrium outcome: Proposer 1

votes for a, Proposer 2 votes for d and Proposer 3 votes for b.

The table below presents the set of strong Nash equilibrium for di¤erent values of v. Notice

that , in this example, the chooser is weakly worst o¤ as v increases.
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Set of strong Nash equilibrium outcomes

k=3 v = 1 q1 = 1 qk = 3 fag
k=3 v = 2 q1 = 2 qk = 3 fag
k=3 v = 3 q1 = 2 qk = 2 fcg

The example below show that the Constrained Chooser Game can have more than one

strong Nash equilibrium outcome and they may depend on how ties are broken.

Example 3 Let A = fa; b; c; d; eg, and let N = f1; :::; 11g. Each proposer votes for one
candidate and the list has the names of the three most voted candidates, with a tie breaking

rule when needed: b � a � e � d � c.

Preference Pro�le

1 proposers type 1 7 proposers type 2 3 proposers type 3 Chooser

b a c b

a c a c

e d e a

d b d e

c e b d

First, by Proposition 1, q1(x) = 3 for any x 2 A and qk(X) = 9 for any X 2 Ak.

First, notice that candidates a and c satisfy all three necessary conditions stated in Propo-

sition 2. Second, notice that the chooser prefers c to a and #fi 2 N jc �i ag � q1(c).

However, candidate a is still a strong Nash equilibrium outcome. Consider the following

strategy pro�le that sustains a as a strong Nash equilibrium outcome: the seven type 2

proposers cast three votes for a, two votes for e, one vote for b and one vote for d. Type

1 proposer casts a vote for b; while the three type 3 proposers cast two votes for d and one

for e. So, a,d and e will have three votes each, while b only two. Thus, the selected list is

fa; d; eg and a is the winning candidate. The readers can check that there is no coalition
of voters that has incentive in deviating.

Now, consider the following strategy pro�le that sustains c as a strong Nash equilibrium

outcome:the seven type 2 proposers cast four votes for a and three votes for e. Type 1

proposer casts a vote for b; while the three type 3 proposers cast three votes for c. Thus,

the selected list is fa; c; eg and c is the winning candidate. Again, the readers can check
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that there is no coalition of voters that has incentive in deviating.

Here there is a intuition for these two equilibria: the equilibrium strategy that sustaining

candidate a represents a clever way in which the type 2�s distribute their votes and leave

the type 3�s not being able to select c, even if they all vote for it. Voters of type 2 ensure

that candidate a, their favorite, is among the proposed ones, by casting three votes in its

favor. They also give enough support to candidate b in such a way that, along with the

vote of type 1, b is still not chose but would be as soon as there candidates with two votes

that should enter the list. In view of the fact that b has two votes, proposers of type 3

cannot vote for their favorite, c, because if they all spent their votes on c, which would

make c eligible, then some alternative with two votes would come in, and in this case it

would be b, which they hate and is the chooser�s best. Given that they cannot get c, they

then concentrate , in alliance with type 2 people, in getting e and d into the list, above

their worse alternative b, and at least get their secod alternative.

The other equilibrium, the one sustaining c, is more obvious: the type 3�s go ahead, sup-

port c, and then the type 2�s have to prevent b from coming by "wasting" their remaining

votes by supporting e.

Thus, it is like the presence of one type 1 proposer voting for b leads both types 2 and 3 in

a sort of race: if one of them uses the most rewarding strategy in one of the two equilibria,

the other must chicken and concede. If both used their most rewarding strategies,then b,

that they both hate, would come out! Notice also that if the tie breaking criterion was

a � e � d � b � c, then c would be the unique Strong Nash equilibrium outcome.

Barberà and Coelho (2010) proved that if the screening rule is majoritarian and the

number of proposers is odd then the set of strong Nash equilibrium outcome of Constrained

Chooser Game is singleton or empty. In the example below the number of proposers is

even and the Constrained Chooser Game has more than one equilibrium outcome.

Example 4 Let A = fa; b; c; dg and let N = f1; 2g. Suppose that each proposer votes for
two candidates and the two most voted candidates form the list , with a tie breaking rule

when needed: c � a � d � b: The preferences of the chooser and the committee members
are as follows:
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Preference Pro�le

Proposer 1 Proposer 2 Chooser

b c a

c b b

d d c

a a d

Notice that q1(c) = q1(a) = 1; q1(b) = q1(d) = 2; q1(fa; cg) = 1 and qk(X) = 2 for any
X 2 Aknfa; cg:
Inspecting the preference pro�le above and applying Proposition 2, we have that:

1. Condition 1: fa; b; cg.
2. Condition 2: fb; cg:
3. Condition 3:fb; cg
So, only candidates b and c satisfy all three conditions. Let us show that the set of strong

Nash equilibrium outcomes is fb; cg. Consider the following strategy pro�le that sustains
c as a strong Nash equilibrium outcome: Proposers casts votes for c and d. So, selected

list is fc; dg and the winning candidate is c. Now, consider the following strategy pro�le
that sustains b as a strong Nash equilibrium outcome: Proposer 1 casts votes for b and

a and Proposers 2 casts votes for b and c. So, selected list is fb; cg and b is the winning
candidate.

The example below shows that the set of necessary conditions established by Propo-

sition 2 are not su¢ cient conditions and the equilibrium may not exist.

Example 5 Let A = fa; b; c; dg and let N = f1; 2; 3g. Suppose that each proposer votes
for one candidate and the two most voted candidates form the list, with the following tie

breaking rule when needed: a � c � b � d. The preferences of the chooser and the com-
mittee members are as follows:

Preference Pro�le

Proposer 1 Proposer 2 Proposer 3 Chooser

c b b a

b c a c

d d c b

a a d d
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We have that q1(a) = q1(c) = 1, q1(x) = 2 for any x 2 Anfa; cg and qk(X) = 2 for any
X 2 Ak such that a 2 X and qk(Y ) = 3 for any Y 2 Ak such that a =2 Y: Inspecting

the preference pro�le above, we have that:

1. Condition 1: fa; b; cg.
2. Condition 2: fb; cg:
3. Condition 3:fbg
So, only candidate b satis�es the three necessary conditions stated in Proposition 2.

However, b is not an equilibrium outcome. He is not an equilibrium outcome, since Pro-

poser 1 always have incentive in preventing the election of b by casting vote in c.

Notice also that the proposers preference pro�le satis�es single peakedness, so this exam-

ple teaches us that this property does not guarantee existence of an equilibrium. If we

had considered a 2-votes screening rules for two names, candidate b would be the unique

strong Nash equilibrium outcome of the game.The table below presents the set of strong

Nash equilibrium for di¤erent values of v.

Set of strong Nash equilibrium outcomes

k=2 v = 1 �

k=2 v = 2 fbg

The example below shows that the existence of strong Nash equilibrium outcome may

depend on the tie breaking criterion.

Example 6 Let A = fa; b; c; dg, and let N = f1; :::; 3g. Each proposer votes for one
candidate and the list has the names of the two most voted candidates, with a tie breaking

rule when needed: c � a � b � d.

Preference Pro�le

Proposer 1 Proposer 2 Proposer 3 Chooser

a c b a

b a c b

c b a c

d d d d

We have that q1(a) = q1(c) = 1, q1(x) = 2 for any x 2 Anfa; cg and qk(X) = 2 for

any X 2 Ak such that c 2 X and qk(Y ) = 3 for any Y 2 Ak such that c =2 Y: In-

specting the preference pro�le above, we have that:
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1. Condition 1: fa; b; cg.
2. Condition 2: fa; cg:
3. Condition 3:fag
Thus, only candidate a satis�es all three necessary conditions stated in Proposition 2.

Consider the following strategy pro�le that sustains a as a strong Nash equilibrium out-

come: each proposer casts a vote for his second highest ranked candidate, that is Proposer

1 votes for b, Proposer 2 votes for a and Proposer 3 votes for c. Thus, the selected list

is fc; ag and a is the winning candidate. Only proposers 2 and 3 would have incentive
in changing the equilibrium outcome. Neither of them alone can change the outcome in

favor of their favorite candidates. By making a joint deviation, they would just be able to

induce the victory of b, but Proposer 2 would be worst o¤ in this case. Notice that if

the tie breaking criterion was c � d � b � a, the set of strong Nash equilibrium outcome

would be empty. The same would happen if the screening rule was 2 votes screening rule

for two names.

Set of strong Nash equilibrium outcomes

k=2 v = 1 fag
k=2 v = 2 �

Proposition 3 Consider any v�rule for k names and let x be one of the chooser´ s (#A�
k+1)-top candidates and X 2 Ak such that x is the chooser best candidate in X, if qk(X)
proposers rank x highest then x is the unique strong Nash equilibrium outcome of the

Constrained Chooser Game.

Proposition 4 Consider any v�rule for k names, if a candidate x is n�bnv
2k
c+1�Condorcet

winner over the set of chooser�s (#A� k+ 1)-top candidates then it is the unique strong
Nash equilibrium outcome of the Constrained Chooser Game.

Proposition 5 Consider any v� rule for k names and denote by x chooser´ s 1-top can-
didate. if x is also a q1(x)�Condorcet winner over the set of chooser�s (#A � k + 1)-
top candidates then it is the unique strong Nash equilibrium outcome of the Constrained

Chooser Game.

To close the section, we present some comparative statics results, that allow us to

understand some of the consequences of choosing one value of v over another.
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Proposition 6 If the chooser 1-top-candidate is a strong Nash equilibrium outcome of

the Constrained Chooser Game under v��rule for k names then it is also a strong Nash
equilibrium outcome of the Constrained Chooser Game under any ev� rule for k names

whenever ev < v�provided that both screening rules have the same tie breaking criteria.
Surprisingly, Example 7 shows that the chooser can be worse o¤ under 1-vote screening

rule for 2 names than under 2-vote screening rule for 2 names.

Example 7 Let A = fa; b; c; dg, and let N = f1; 2; 3g. Each proposer votes for one can-
didate and the list has the names of the two most voted candidates, with a tie breaking

rule when needed: c � d � b � a.

Preference Pro�le

Proposer 1 Proposer 2 Proposer 3 Chooser

b a a b

d c c a

c d d c

a b b d

As can be veri�ed, c is the unique equilibrium outcome of the Constrained Chooser Game

under the 1-vote screening rule for 2 names.

Here there is a intuition for this result: notice that candidate a cannot be a strong equi-

librium outcome of the Constrained Chooser Game, because as long as proposer 1 votes

for b, proposers 2 and 3 cannot get a to be the outcome, even if they can force a to be

in the list. Short of that, proposers 2 and 3 coordinate their actions so that one of them

votes for c and the other for d. If 1 persists in voting for b, this creates a tie between the

three candidates that is solved in favor of c and d, out of which the chooser selects c. If 1

votes for c instead, the same outcome ensues. And all other actions by any combination

for agents would lead some of them to outcomes that would be worse than c for some of

them. Hence, c is the unique strong Nash equilibrium of the Constrained Chooser Game

under our proposed rule.

Now let us change the screening rule for 2 names. Suppose that the proposers use 2-

votes screening rule for 2 names. Now, a is the strong Nash equilibrium outcome of the

Constrained Chooser Game. This shows that here the chooser is better o¤ under 2-vote

screening rule for 2 names than under the 1-vote screening rule for 2 names.
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4 Two special cases with simple solutions

In this section we describe two special cases of societies based on restrictions over the

structure of the proposer�s preference pro�les. They share the property of guaranteeing

the existence of well characterized equilibria. This makes them especially useful when

providing expected utility calculations in the following section.

4.1 The homogeneous proposers model

First, consider the case where all proposers share the same preferences. The analysis of

this simple case is similar, though not identical, to that of the special case when there is

one single proposer. This is why we start by considering that even more special case.

If there is only one proposer, using a backward induction rationality, the equilibrium

outcome is the best alternative for the proposer out of the a � k + 1-top alternatives of
the chooser.

Now take any v-voting rule of k names. It is clear that the whole set of proposers,

acting together, can always guarantee a proposal that determines whatever set of k names

the proposer decide to send to the chooser (notice, however, that this may involve di¤erent

proposers voting for di¤erent candidates. After this observation, the analysis of this case

proceeds as that of the one proposer case.

Proposition 7 Consider the homogeneous proposers model. The strong Nash equilibrium

outcome is the best alternative for the proposers out of the a � k + 1-top alternatives of
the chooser.

4.2 The polarized proposers model

Now consider the case where two groups of agents hold identical preferences within the

group and opposite to those of proposers in the other side. An important result is that

under the assumptions of what we call the Polarized Proposers Model, strong Nash equi-

libria always exist for the corresponding restricted choosers game, and the equilibrium

outcome is unique. This result will help us in our search for expected utility evaluation of

alternative rules, to be carried out in Section 5. Moreover, it represents a �rst example of

special models for which we can guarantee existence of equilibria under non majoritarian

screening rules. Hopefully, other interesting settings with these characteristics will arise.
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Assumptions on the preferences pro�le:

1. (Assumption 1). There are two groups of proposers, denoted by G1 and G2, such

that G2 = NnG1.

2. (Assumption 2). All the proposers in G1 share the same preferences over the set of

candidates.

3. (Assumption 3). All the proposers in G2 share the same preferences over the set of

candidates and it is the reverse of the preferences of the proposers in G1.

4. (Assumption 4). The tie breaking rule coincides with at least one of the agent´s

preferences over the set of candidates.

Denote by m the cardinality of majoritarian group of proposers, so if #G1 � #G2

then m = #G1; otherwise m = #G2:

Proposition 8 Consider the Polarized Proposers Model, odd number of proposers and

any v-rule for k names. A strong Nash equilibrium outcome of the Constrained Chooser

Game always exists and it is unique. In addition:

1) Suppose that the tie breaking criterion coincides with the chooser´ s preferences over the

set of candidates or with the minoritarian group ´ s preferences over the set of candidates.

If m � qk then the strong Nash equilibrium outcome is the best alternative of individuals

in the majoritarian group out of chooser´ s (#A� k + 1)-top alternatives;
If qk > m then the strong Nash equilibrium outcome is the chooser´ s 1-top alternative.

2) Suppose that the tie breaking criterion coincides with the majoritarian group´ s prefer-

ences over the set of candidates.

If m � qk > n � m then the strong Nash equilibrium outcome is the best alternative of

individuals in the majoritarian group out of chooser´ s (#A� k + 1)-top alternatives;
If qk > m � q1 > n �m then the strong Nash equilibrium outcome is the chooser´ s best

alternative out of the majoritarian group´ s k-top candidates;

If qk > m > n�m � q1 then the equilibrium outcome is the chooser´ s top alternative.

The example below shows that without assumption 4 the Polarized proposers model

may not has a strong Nash equilibrium outcome.
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Example 8 Let A = fa; b; c; d; e; fg and let N = f1; 2; 3g. The proposers use 1-rule for
4 names with the following tie breaking rule when needed: e � d � c � b � a � f . The
preferences of the chooser and the committee members are as follows:

Preference Pro�le

Proposer 1 Proposer 2 Proposer 3 Proposer 4 Proposer 5 Chooser

d d d d f f

e e e e b a

c c c c a b

a a a a c c

b b b b e d

f f f f d e

First, by Proposition 1, q1 = 2 and qk = 5. We have that q1(x) = 1 for any x 2 fb; c; d; eg,
q1(x) = 2 for any x 2 Anfb; c; d; eg and qk(X) = 5 for any X 2 Aknfb; c; d; eg and
qk(fb; c; d; eg) = 4 :Notice that proposers 1, 2,3, and 4 form the majoritarian group of

proposers, so m = 4. Notice also that the tie breaking rule is equal to the reverser of

chooser´ s preference over the set of candidates. The �rst step in describing the equilib-

rium outcomes is to identify those candidates that satisfy the three necessary conditions

established in Proposition 2.

Inspecting the preference pro�le above and recalling that #A = 6, we have that:

1. Condition 1: fa; b; fg.
2. Condition 2: fa; b; c; d; eg:
3. Condition 3:fa; b; c; d; e; fg
So, only candidates a and b satisfy all three conditions. However, there exists no strategy

pro�le that can sustain them as an strong Nash equilibrium outcome of the Constrained

Chooser Game.

Corollary 1 Consider the Polarized Proposers Model and odd number of proposers. The

chooser cannot be worst o¤ under v�-rule for k names than under ev� rule for k names

whenever ev > v�.
The corollary above follows from Proposition 8 and by the fact that qk is a decreasing

function on v.
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Corollary 2 Consider the Polarized Proposers Model, odd number of proposers and v�rule
of k names. The chooser cannot be worst o¤ under a more polarized set of proposers (small

m) than under a less polarized set of proposers (big m).

The corollary above follows from Proposition 8.

Corollary 3 Consider the Polarized Proposers Model and odd number of proposers. The

chooser cannot be worst o¤ under v- rule for k�names than under v� rule for k�� names

whenever k��> k�.

The corollary above follows from Proposition 8 and by the fact that qk is a increasing

function on k.

5 Comparison of payo¤ distributions in terms of re-

turns and risks

In this section, we study the agents´s payo¤distributions from applying di¤erent v-rules of

k names. Based on these payo¤distributions, we analyze the optimal k and the parameter

v of the screening rule according to utilitarian and egalitarian criteria.

5.1 Homogeneous committee

In this subsection, we consider the Homogeneous Proposers Model and assume that

agents´ preferences are random draw from an uniform distribution over the domain of

preferences.

5.1.1 Distribution of the ranking of equilibrium outcome .

Let us assume that homogeneous proposers and the chooser´s preferences are the result of

independent random draws from an uniform distribution over domain of strict preferences.

Given that the agents´s preferences are random variables, the ranking of the equilibrium

outcome according to the preferences of tone of the agents is also a random variable.

Denote by Rc and Rp the random variables that represent the ranking of the equilibrium

outcome according to the chooser and proposers´ preference relation and by rc and rp
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the realized values which Rc and Rp may take, so ri = 1 + #fy 2 N jy �i xg if x is the
equilibrium outcome. Notice that if equilibrium outcome is the agent i´s best candidate

then ri = 1 and if it is the agent i´s worst candidate ri = a:

The random variable Rp has the same distribution of the smallest element of a random

sample with size s = a � k + 1 drawn without replacement from a population D =

f1; 2; : : : ; ag uniformly distributed. Thus, following the standard results of order statistics
literature, we have:

Let describe Rp by means of the cumulative distribution function Fp : f1; ::; ag ! [0; 1]:

That is, for any rp; let Fp(rp) be the probability that the realized ranking of the equilibrium

outcome is less or equal than rp according to the proposers´ preferences is :

Fp(rp = xja; k) =

8>>>><>>>>:

xX
j=1

(a�ja�k)
( a
a�k+1)

if x 2 f1; :::; kg

1 otherwise

(1)

Equations (2) and (3) below give the formulas of the mean and variance of Rp:

E(Rpja; k) = a+1
a�k+2 (2)

V ar(Rpja; k) = (a�k+1)(a+1)(k�1)
(a�k+2)2(a�k+3) (3)

After some algebraic manipulation, we can see that E(Rpja; k) is strict increasing with
k but at a decreasing rate with respect to k and V ar(Rcjk; a) is strict increasing with
respect to k;but at a increasing rate with respect to k.

Let Fc : f1; ::; ag ! [0; 1] be the the cumulative distribution function of Rc:Notice that

the random variable Rc has the same distribution of a discrete random variable uniformly

distributed over f1; 2; : : : ; a� k + 1g. Therefore, we have that:

Fc(rc = xjk; a) =

8>><>>:
x

a�k+1 if x 2 f1; :::; a� k + 1g

1 otherwise

(4)

Equations (5) and (6) below give the formulas of the mean and variance E(Rc).

E(Rcjk; a) = a�k+2
2

(5)
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V ar(Rcjk; a) = (a�k)(a�k+2)
12

(6)

Notice that E(Rcjk; a) is strict decreasing with respect to k at a constant rate and
V ar(Rcjk; a) is strict decreasing with respect to k; but at a decreasing rate with respect
to k.

Remark 7 Notice that E(Rcjk; a)E(Rpja; k) = a+1
2
for every k 2 f1; :::; ag:

Example 9 Suppose a = 10, Figure 1 and Figure 2 display the cumulative distributions

of Rc and Rp under k = 8 (Figure 1) and k = 4 (Figure 2). Notice that in Figure 1 the

distribution of Rc �rst order stochastically dominates the distribution Rp, while in Figure

2 the reverse holds. Figures 3 and 4 displays the mean and the variance of Rp and Rc for

di¤erent values of k.
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Figure 1: Fp(rpj10; 8) black boxes and Fc(rcj10; 8) white boxes.
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Figure 2: F (rpj10; 4) black boxes and F (rcj10; 4) white boxes.
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Figure 3: E(Rpja = 10; k) black boxes and E(Rcja = 10; k) white boxes.
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Figure 4: V ar(Rpja = 10; k) black boxes and V ar(Rcja = 10; k) white boxes.

Proposition 9 Consider any number of candidates a:

1) E(Rcjk; a) > E(Rpjk; a) for every k < a+ 2�
p
2a+ 2;

2) E(Rcjk; a) = E(Rpjk; a) if k = a+ 2�
p
2a+ 2 is an integer number;

3) E(Rpjk; a) > E(Rcjk; a) for every k > a+ 2�
p
2a+ 2:

The proposition follows from equations (4) and (6), the fact that if k = a+2�
p
2a+ 2

then we have that ( a+1
a�k+2) =

(a�k+2)
2

; E(Rpja; k) is strict increasing with k and E(Rcja; k)
is strict decreasing with k:

5.1.2 Proposer or chooser: which one would you like to be?

The results presented in this subsection will try to help us to answer the following question:

proposer or chooser: which position gives a higher expected payo¤ in the game induced

by the rule of k names? We answer this question comparing the expected utility in each

position of an imaginary agent i that has Bernoulli utility function, u(r); that is strict

decreasing with r. We will show that the answer will depend of the level of the curvature

of u(r); that is level of the risk aversion of the agent.
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Example 10 Consider a = 17 and k = 12 . Suppose that agent i has the following de-

creasing and concave utility function u(r) = �e
r where 
 > 0: The parameter 
 is the

coe¢ cient of absolute risk aversion. Proposer or Chooser: which position would give a

higher payo¤ to agent i? Before answer this question, let us compute the expected returns

and risks face by the proposer and chooser. Using the expressions (2),(3),(5) and (6), we

have that:

E(Rpja = 17; k = 12) = 17+1
17�12+2 = 2:5714; V ar(Rpja = 17; k = 12) =

(17�12+1)(17+1)(12�1)
(17�12+2)2(17�12+3) =

3:0306;

E(Rcja = 17; k = 12) = 17�12+2
2

= 3:5;V ar(Rcja = 17; k = 12) = (17�12)(17�12+2)
12

=

2:9167:

Notice, under a=17 and k=12, if agent i was risk neutral, he would prefer to be the pro-

poser since E(Rpja = 17; k = 12) < E(Rcja = 17; k = 12).

However, agent i is risk averse, so he cares about the risks of being in each position. Let

us assume that 
 = 0:2: So, his expected utility in each position is: E(u(Rp)ja = 17; k =

12) =

12X
j=1

�e0:2j( 17�j17�12)
( 17
17�12+1)

= �1:795 3 and E(u(Rc)ja = 17; k = 12) =
17�12+1X
j=1

�e0:2j
17�12+1 =

�2:1332:

Thus, since E(u(Rp)ja = 17; k = 12) > E(u(Rc)ja = 17; k = 12); agent i prefers

to be the proposer. However, if 
 = 0:8 (that is more risk averse), he would prefer

to be the chooser since E(u(Rp)ja = 17; k = 12) =

12X
j=1

�e0:8j( 17�j17�12)
( 17
17�12+1)

= �41:514 and

E(u(Rc)ja = 17; k = 12) =
17�12+1X
j=1

�e0:8j
17�12+1 = �36:474:

Proposition 10 below gives the values of k for which we do not need to have information

of the functional form of the utility function, in order to know the best position (proposer

or chooser) to play the game induced by the rule of k names (see Figure 9).

Proposition 10 For any utility function u(�); we have that:

1) E(u(Rp)) > E(u(Rc)) for every k < a+1
2
;

2) E(u(Rc)) > E(u(Rp)) for every k > a� 2
p
a+ 1:
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Figure 5: Illustration of Proposition 10.

In Figure 5, we can see that if k 2 [a+1
2
; a �

p
a + 1]; without knowing the utility

function of an agent, we cannot know the best position (proposer or chooser) for him to

play the game induced by the rule of k names.

The next proposition tells us that if we know whether the utility function is concave

or convex, we can enlarge the interval of values of k that we know for sure what is the

best position to play the game (see �gures 6 and 7).

Proposition 11 Consider any number of candidates a:

1) For any strict decreasing and concave utility function u(�):
E(u(Rc)) > E(u(Rp)) for every k > a+ 2�

p
2a+ 2:

2) For any strict decreasing and convex utility function u(�):
E(u(Rp)) > E(u(Rc)) for every k < a+ 2�

p
2a+ 2:

Figure 6: Illustration of Proposition 11 for the case where u( ) is concave.
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Figure 7: Illustration of Proposition 11 for the case where u( ) is convex.

The next proposition below show that if an agent has a linear utility function, for any

possible value of k, we will know for sure what is the best position to play the game (see

Figure 8).

Proposition 12 For any linear utility function u(�):

1) E(u(Rp)jk; a) > E(u(Rc)jk; a) for every k < a+ 2�
p
2a+ 2;

2) E(u(Rp)jk; a) = E(u(Rc)jk; a) if k = a+ 2�
p
2a+ 2 is an integer number;

3) E(u(Rc)jk; a) > E(u(Rp)jk; a) for every k > a+ 2�
p
2a+ 2:

Figure 8: Illustration of Proposition 12, u( ) is linear.

Example 11 Suppose that a = 17. Notice that a + 2 �
p
2a+ 2 = 13: Thus, applying

Proposition 12, we have that E(Rpja = 7; k = 13) = E(Rcja = 7; k = 13): By expressions
(4)-(7), we have that E(Rpja = 17; k = 13) = E(Rcja = 17; k = 13) = 3; V ar(Rpja =
17; k = 13) = 4: 2857 and V ar(Rcja = 17; k = 13) = 2. Notice also that any risk averse
agent would prefer to be the chooser than the proposer and any risk lover agent would

prefer to be the proposer.
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5.1.3 Welfare analysis: The optimal k

In this subsection, we study the optimal k according to utilitarian and egalitarian criteria.

Here we parameterize the chooser and proposers´ Bernoulli utility functions in order to

study how the optimal k varies with the number of candidates and their level of risk

aversion. Suppose the following standard functional form of Bernoulli utility function:

ui(ri) = �ri � 
ir2i + 
i where 
i > � 1
2a

(8)

Remark 8 Notice that:

1) Given that 
i > � 1
2a
, ui(ri) is strict decreasing with ri:

2) If 
i = 0 then ui(ri) = �ri (risk neutral).
3) If 
i > 0 then ui(ri) is strict concave with ri (risk averse).

4) If 0 > 
i > � 1
2a
then ui(ri) is strict convex with ri (risk lover)

Example 12 Consider a = 6. The Figure 9 below plots ui(ri) for three di¤erent values

of 
i 2 f�1=13; 0; 1=13g:

53.752.51.25

-1.25

-2.5

-3.75

-5

-6.25

-7.5

r

u(r)

r

u(r)

Figure 9: 
 = �1=13 (red), 
 = 0 (black ) and 
 = 1=13 (green)

Taking the expectation of both sides of expression (8), we have that:

E(u(r)ja; k) = �E(rja; k)� 
(E(r2ja; k)) + 
 (9)

Given that V ar(rja; k) = E(r2ja; k)� E(rja; k)2 and (9), we have that
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E(u(r)ja; k) = �E(rja; k)� 
(V ar(rja; k) + E(rja; k)2) + 
 (10)

Therefore, after some algebraic manipulation with expressions (2)-(3), (5)-(6) and (10),

we have the explicit formulas of the proposer and chooser´s expected utilities:

E(up(Rp)ja; k) = � (a+1)
(a�k+2) �


p(a+k+1)(a+1)

(a�k+2)(a�k+3) + 
p (11)

E(uc(Rc)ja; k) = � (a�k+2)
2

� 
c(a�k+2)(2a�2k+3)
6

+ 
c (12)

Remark 9 Notice that E(up(Rp)ja; k = 1) = �1; E(uc(Rc)ja; k = 1) = � (a+1)
2

�

c(2a+5)(a�1)

6
; E(up(Rp)ja; k = a) = � (a+1)

2
� 
p(2a+5)(a�1)

6
and E(uc(Rc)ja; k = a) = �1.

Thus, E(up(Rp)ja; k = 1) > E(uc(Rc)ja; k = 1) and E(uc(Rc)ja; k = a) > E(up(Rp)ja; k =
a) since 
c >

1
�2a and 
p >

1
�2a :

Example 13 Consider a = 7, 
p = 
c = 0 (risk neutral). Figure 10 plots the expected

utilities for di¤erent values of k. Notice that for any k � 4; the proposers have a higher
expected utility than the chooser and when k=5 they have the same expected utilities.

6.2553.752.51.25
-1

-1.5

-2

-2.5

-3

-3.5

-4

k

E(u(r)|a=7,k)

k

E(u(r)|a=7,k)

Figure 10: E(up(rp)ja; k) (white box) and E(uc(rc)ja; k) (black)

Suppose now that the proposers are risk averses. Figure 11 plots the expected utilities

when 
p = 3; 
c = 0 and a = 7. Notice that the chooser has a higher expected utility than

the proposers even when k = 3.
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6.2553.752.51.25
0

-12.5

-25

-37.5

-50

-62.5

k

E(u(r)|a,k)

k

E(u(r)|a,k)

Figure 11: E(up(rp)ja; k) (white) and E(uc(rc)ja; k) (black)

Proposition below states that there is threshold in the interval t 2 [1; a] such that for
for any value of k < t the proposers have higher payo¤s than the chooser and for any

k > t than the reverse holds. Moreover the threshold is only a function of a; k; 
p and 
c:

Proposition 13 For any values of 
p � 1
�2a and 
c �

1
�2a there is a > t(a; 
c; 
p) > 1

such that:

1) E(up(Rp)jk; a) > E(uc(Rc)jk; a) for every k < t(a; 
c; 
p);

2) E(up(Rp)jk; a) = E(uc(Rc)jk; a) if k = t(a; 
c; 
p) is an integer number;

3) E(uc(Rc)jk; a) > E(up(Rp)jk; a) for every k > t(a; 
c; 
p):

In particular, t(a; 
c; 
p) has a simple formula when 
p = 
c = 0 :

t(a; 
c = 0; 
p = 0) = a+ 2�
p
2a+ 2

Proposition 13 follows from the factE(up(r)ja; k) is strict decreasing with k, E(uc(k)ja; k)
is strict increasing with k and E(up(r)ja; k = 1) > E(uc(r)ja; k = 1) and E(uc(r)ja; k =
a) > E(up(r)ja; k = a):We �nd the explicit form of the function t(a; 
c; 
p = 0) by solving
the following equation: � (a+1)

(a�k+2) = �
(a�k+2)

2
:
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Proposition 14

1) If 
p � 
c > 0 then 1 < t(a; 
c; 
p) < a+ 2�
p
2a+ 2:

2) If 
p � 
c � 0 then a+ 2�
p
2a+ 2 < t(a; 
c; 
p) < a:

3)If 
c �
3( 2
p
2a+2�1)2
(2a+1)


p > 0 then a+ 2�
p
2a+ 2 < t(a; 
c; 
p) < a:

4) If 
c �
3( 2
p
2a+2�1)2
(2a+1)


p < 0 then 1 < t(a; 
c; 
p) < a+ 2�
p
2a+ 2:

Corollary 4 If 
p = 
c = 
 > 0 then t(a; 
c = 0; 
p = 0) > t(a; 
c = 
; 
p = 
):

If 
p = 
c = 
 < 0 then t(a; 
c = 
; 
p = 
) > t(a; 
c = 0; 
p = 0):

Example 14 Suppose that a = 1000: Here we compute t(a; 
c; 
p) for di¤erent values

of 
c and 
p: We have that t(a; 
c = 0; 
p = 0) = 1000 + 2 �
p
2000 + 2 = 957:26;

t(a; 
c = 500; 
p = 500) ' 952:9 and t(a; 
c = �1=3000; 
p = �1=3000) ' 957:36 ,

t(a; 
c = 0; 
p = 500) ' 190:5 and t(a; 
c = 500; 
p = 0) ' 999:429. It seems that
t(a;
c;
p)

t(a;
c=0;
p=0)
is close to 1 when 
p = 
c = 
:

De�nition 14 A k 2 f1; :::; ag satis�es the egalitarian solution if E(up(Rp)jk; a)�E(uc(Rc)jk; a)j
� jE(up(Rp)jk�; a)�E(uc(Rc)jk�; a)j for every k�2 f1; :::; ag: We denote by Se(a; 
c; 
p) the
set of ks that satisfy the egalitarian solution. We denote ke(a; w; 
c; 
p) the largest k in

Se(a; 
c; 
p):

De�nition 15 A k 2 f1; :::; ag satis�es the utilitarian solution if wE(up(Rp)jk; a)+ (1�
w)E(uc(Rc)jk; a) � wE(up(Rp)jk�; a) + (1 � w)E(uc(Rc)jk�;a)n

for every k�2 f1; :::; ag where
w 2 (0; 1): We denote by Su(a; 
c; 
p) the set of ks that satisfy the utilitarian solution.
We denote ku(a; 
c; 
p) the largest k in Su(a; 
c; 
p):

Proposition 15 There exist at most two values of k that maximizes wE(up(Rp)jk; a) +
(1�w)E(uc(Rc)jk; a). In the case where k and k�both maximize wE(up(Rp)jk; a) + (1�
w)E(uc(Rc)jk; a), k and k �are adjacent, i.e. k = k �� 1. The utilitarian ku(a; w; 
c; 
p)

is equal to the largest k�2 f1; :::; ag such that (a+1)(a�k0+4)+
p(3a+k0+4)(a+1)
(a�k+3)(a�k0+2)(4a
c�4k0
c+9
c+3)

� (1�w)
w

1
6
and

(a+1)(a�k0+4)+
p(3a+k0+4)(a+1)
(a�k+3)(a�k0+2)(4a
c�4k0
c+9
c+3)

� (1�w)
w

1
6
for any k > k�.

Moreover if
(a+1)(a�k0+4)+
p(3a+k0+4)(a+1)

(a�k0+3)(a�k0+2)(4a
c�4k0
c+9
c+3)
= (1�w)

w
1
6
then k� is a twin-dips.

In particular, ku has a simple formula when 
p = 
c = 0 :

ku(a; w; 
c = 0; 
p = 0) =
j
a+ 5

2
�
q

w
1�w

�
2a+ 7w+1

4w

�k
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Proposition 16 Let 
p = 
c = 0: k 2 f1; :::ag minimizes jE(up(Rp)ja; k)�E(uc(Rc)ja; k))j
if and only if maximizes E(up(Rp)ja; k) + E(uc(Rc)ja; k).

Corollary 5 below states that, when 
p = 0; 
c = 0 and w =
1
2
; the utilitarian k is not

lower than (a+1)
2

and is equal to the egalitarian k.

Corollary 5 Let 
p = 0; 
c = 0 and w =
1
2
:

ku(a; w =
1
2
; 
c = 0; 
p = 0) = ke(a; 
c = 0; 
p = 0) =

j
a+ 5

2
�
q
2a+ 9

4

k
� (a+1)

2
:

Remark 10 Let 
p = 0; 
c = 0 and k� = a+
5
2
�
q
2a+ 9

4
: Notice that

k� � t(a; 
c = 0; 
p = 0) =
p
2a+ 2 + 1

2
�
q
2a+ 2 + 1

4
: Thus 1 > k� � t(a; 
c = 0; 
p =

0) > 0 for every a > 0. Therefore if t(a; 
c = 0; 
p = 0) is an integer number we have

that
j
a+ 5

2
�
q
2a+ 9

4

k
= t(a; 
c = 0; 
p = 0):

Example 15 Suppose that a = 1000; 
p = 0, 
c = 0 and w =
1
2
. Applying Proposition

11 and Corollary 5, ku(a; w = 1
2
; 
c = 0; 
p = 0) = ke(a; 
c = 0; 
p = 0) = ba + (5=2) �

2
p
(2a+ 9=4)c = 957. Under k = 957, the expected ranking of the equilibrium outcome is

(a+1)=(a�k+2) = 22:244 according to the proposers preferences and (a�k+2)=2 = 22:5
according to the chooser´ s preferences.

The example below shows that Corollary 5 does not apply for the case where 
p 6= 
c:

Example 16 Suppose that a = 7: Here, we compute the optimal k when 
c = 0 and


p = 0:5 : ku(a; w =
1
2
; 
c = 0; 
p = 0:5) = 2 and ke(a; 
c = 0; 
p = 0:5) = 4.

The example below shows that the equivalence between utilitarian and egalitarian

criteria when 
p = 
c = 0 seems to hold even for the case where 
p = 
c 6= 0; but it

remains to be proved.

Example 17 Suppose that a = 1000: Here, we compute ku(a; w = 1
2
; 
c; 
p) and ke(a; 
c; 
p)

for (
c = 500; 
p = 500) and (
c = �1=3000; 
p = �1=3000): ku(a; w = 1
2
; 
c = 500; 
p =

500) = ke(a; 
c = 500; 
p = 500) = 953 and ku(a; w =
1
2
; 
c = �1=3000; 
p = �1=3000) =

ke(a; 
c = �1=3000; 
p = �1=3000) = 957:
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5.1.4 The case of homogeneous committee with complete ignorance

Suppose now the agents will not know the other players´ preferences at time of the vote.

Under the this complete ignorance scenario, the best that the homoegeneous proposers

can do is to make a list with his k-top alternatives, from which the chooser makes a �nal

choice. Thus, the equilibrium outcome will be the chooser best alternative out of the k-

top alternatives of the proposers. Notice that the symmetry between this characterization

with the one under complete information. To see it, replace in the characterization the

word "chooser" by "proposers", "proposers" by "chooser" and "k-top" by "a-k+1-top"

and we have the characterization under the complete information scenario.

We can use this symmetry to characterize the distributions functions of Rp and Rc:

Now, Rp has a distribution similar to the distribution of Rc under complete information

scenario and, of courser, the same happen with Rc: Thus, Rp has the same distribution of

a discrete random variable uniformly distributed over f1; 2; : : : ; kg and Rc has the same
distribution of the smallest element of a random sample with size s = k drawn without

replacement from a population D = f1; 2; : : : ; ag:
Suppose also that up(Rp) = �rp and u2(Rc) = �rc . The equations below give the

formulas the proposer and chooser´s expected utilities:

E(u(Rp)ja; k) = �k+1
2

E(u(Rc)jk; a) = �a+1
k+1

Proposition 17 Let 
p = 0; 
c = 0 and w =
1
2
:

ku(a; w =
1
2
; 
c = 0; 
p = 0) = ke(a; 
c = 0; 
p = 0) = a�

j
a+ 5

2
�
q
2a+ 9

4

k
+1 � (a+1)

2
:

Example 18 Suppose that a = 1000; 
p = 0, 
c = 0 and w =
1
2
. Applying Proposition 11,

the optimal k is equal to ku(a; w = 1
2
; 
c = 0; 
p = 0) = a�ba+(5=2)� 2

p
(2a+ 9=4)c+1 =

1000 � 957 + 1 = 44:0. Under k = 44, the proposers´ expected utilities are equal to

�(44 + 1)=2 = �22:5 and the chooser�s expected utility is equal to (1000 + 1)=(44 + 1) =
�22:244.

5.2 The case of several proposers: Polarized Proposers Model

In this subsection, we consider the Polarized Proposers Model, odd number of proposers

and assume that agents´ preferences are random draw from an uniform distribution over
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the domain of preferences. We also assume that the tie breaking criterion coincides with

the majoritarian group´s preferences over the set of candidates.

5.2.1 Distribution of the ranking of equilibrium outcome .

Proposition 18 For any pair of (v,k), we have that the rankings of the strong Nash

equilibrium outcome according to players preferences have the following distribution:

1) If m ³ qk > n ? m then:

F1 Ýr1= x|a,kÞ =

>
j=1

x a?j
a?k
a

a?k+1

if x 5 á1, . . . ,kâ

1 otherwise

EÝR1 |a,kÞ = Ýa+1Þ
Ýa?k+2Þ

VarÝR1 |a,k ,vÞ = Ýa?k+1ÞÝa+1ÞÝk?1Þ
Ýa?k+2Þ2Ýa?k+3Þ

F2 Ýr2= x|a,kÞ =

>
j=a?k+1

x j?1
a?k
a

a?k+1

if x 5 áa ? k + 1, . . . ,aâ

1 otherwise

EÝR2 |a,kÞ = Ýa+1ÞÝa?k+1Þ
Ýa?k+2Þ

VarÝR2 |a,kÞ = Ýa?k+1ÞÝa+1ÞÝk?1Þ
Ýa?k+2Þ2Ýa?k+3Þ

FcÝrc= x|k ,aÞ =

x
a?k+1

if x 5 á1, . . . ,a ? k + 1â

1 otherwise

EÝRc |a,kÞ =
Ýa?k+2 Þ

2

VarÝRc |k ,aÞ = Ýa?kÞÝa?k+2Þ
12
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2) If qk> m ³ q1> n ? m then:

F1 Ýr1= x|k ,aÞ =

x
k

if x 5 á1, . . . ,kâ

1 otherwise

EÝR1 |a,kÞ = k+1
2

VarÝR1 |a,kÞ = Ýk?1ÞÝk+1Þ
12

F2 Ýr2= x|a,kÞ =

x
k

if x 5 áa ? k + 1, . . . ,aâ

0 if otherwise

EÝR2 |a,kÞ = Ý2a?k+1Þ
2

VarÝR2 |a,kÞ = Ýk?1ÞÝk+1Þ
12

FcÝrc= x|a,kÞ =

>
j=1

x a?j
k?1
a
k

if x 5 á1, . . . ,a ? k + 1â

1 otherwise

EÝRc |a,kÞ = Ýa+1Þ
Ýk+1Þ

VarÝRc |a,kÞ = kÝa+1ÞÝa?kÞ
Ýk+1Þ2Ýk+2Þ

3) If qk > m > n ? m ³ q1 then:

F1 Ýr1= x|k ,aÞ =

x
k

if x 5 á1, . . . ,kâ

1 otherwise

EÝR1 |a,kÞ = a+1
2

VarÝR1 |a,kÞ = Ýa+1ÞÝa?1Þ
12

F2 Ýr2= x|a,kÞ =

x
k

if x 5 áa ? k + 1, . . . ,aâ

0 if otherwise

EÝR2 |a,kÞ = a+1
2

VarÝR2 |a,kÞ = Ýa+1ÞÝa?1Þ
12

FcÝrc= x|a,kÞ =

1 if x 5 á1, . . . ,aâ

0 otherwise

EÝRc |a,kÞ = 1

VarÝRc |a,kÞ = 0

Corollary 6 Consider any number of candidates a and any (k,v) such that m � qk >

n�m:

1) E(R2) > E(Rcjk; a) > E(R1jk; a) for every k < a+ 2�
p
2a+ 2;

2) E(R2) > E(Rcjk; a) = E(R1jk; a) if k = a+ 2�
p
2a+ 2 is an integer number;

3) E(R2) > E(R1jk; a) > E(Rcjk; a) for every k > a+ 2�
p
2a+ 2:
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Corollary 7 Consider any number of candidates a and any (k,v) such that qk> m � q1> n�m:

1) E(R2) > E(Rcjk; a) > E(R1jk; a) for every k <
p
2a+ 2� 1;

2) E(R2) > E(Rcjk; a) = E(R1jk; a) if k =
p
2a+ 2� 1 is an integer number;

3) E(R2) > E(R1jk; a) > E(Rcjk; a) for every k >
p
2a+ 2� 1:

Corollary 8 For any utility function u(�) and for any (k,v) such that qk > m > n�m �
q1; we have that:

E(R2) = E(R1) > E(R2) for every (k; v);

5.2.2 Proposer or chooser: which one would you like to be?

Example 19 Consider a = 7; n = 5, m = 4: Suppose that the proposers use 2-rule for 3

names and that agent i has the following decreasing and concave utility function u(r) = �r:
Proposer or Chooser: which position would give a higher payo¤ to agent i? Before answer

this question, let us compute the expected returns and risks face by the proposer and

chooser. Notice �rst that, given k=3 and v=2, we have that qk > m � q1 > n�m: Hence,
applying Proposition 18, we have that:

E(u(R1)ja = 7; k = 3; v = 2) = �2; E(u(R2)ja = 7; k = 3; v = 2) = �6 and E(u(Rc)ja =
7; k = 3; v = 2) = �2;

Thus, the agent i is indi¤erent between to be the a proposer of the majoritarian group and

the chooser.

However, if agent i was risk averse, so he cares about the risks of being in each position.

Suppose that agent i has the following decreasing and concave utility function u(r) = �e
r

where 
 > 0: Let us assume that 
 = 0:2: So, his expected utility in each position is:

E(u(R1)ja = 7; k = 3; v = 2) =

3X
j=1

�e0:2j
3

= �1:5118 ; E(u(R2)ja = 7; k = 3; v = 2) =

7X
j=5

�e0:2j
3

= �3:3645 and E(u(Rc)ja = 17; k = 12) =
5X
j=1

�e0:2j(7�j3�1)
(73)

= �1:5305

Thus, now, agent i prefers to be a proposer of the majoritarian group. Suppose now that

proposers use 1-rule for 3 names. Given k=3 and v=1 we have that qk > m > n�m � q1:
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Thus, applying Proposition 18, we have E(u(R1)ja = 7; k = 3; v = 1) =

7X
j=1

�e0:2j
7

=

�2:4078 ; E(u(R2)ja = 7; k = 3; v = 2) =
7X
j=1

�e0:2j
7

= �2:4078 and E(u(Rc)ja = 7; k =

3; v = 1) = �e0:2 = �1:2214: Hence, when v=1 and k=3, agent i prefers to be the chooser.
Notice also if agent i had u(r) = �r, i.e he were risk neutral. He would still prefer to

be the chooser given that E(u(R1)ja = 7; k = 3; v = 1) = �4; E(u(R2)ja = 7; k = 3; v =
1) = �4 and E(u(Rc)ja = 7; k = 3; v = 1) = �1:
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Proposition 19 Consider any number of candidates a and any (k,v)

such that m � qk > n�m:

1 a(a+1)/2 a-(a)1/2+1

E(u(R1)|a,k)> E(u(Rc)|a,k) > E(u(R2)|a,k)

1) For any decreasing utility function, we have:

k

E(u(Rc)|a,k)> E(u(R1)|a,k) > E(u(R2)|a,k)

1 a(a+1)/2 a+2-(2a+2)1/2

E(u(R1)|a,k)> E(u(Rc)|a,k)> E(u(R2)|a,k) E(u(Rc)|a,k)> E(u(R1)|a,k) > E(u(R2)|a,k)

2) For any concave and decreasing utility function, we have:

k

E(u(Rc)|a,k)> E(u(R1)|a,k) > E(u(R2)|a,k)

)>E(u(R2)|a,k)

1 aa-a1/2+1

E(u(R1)|a,k)> E(u(Rc)|a,k) > E(u(R2)|a,k)

a+2-(2a+2)1/2

3) For any convex and decreasing utility function, we have:

k

1 a

E(u(R1)|a,k)> E(u(Rc)|a,k)> E(u(R2)|a,k)
E(u(Rc)|a,k)

E(u(Rc)|a,k)> E(u(R1)|a,k) > E(u(R2)|a,k)
>E(u(R2)|a,k)E(u(R2)|a,k)

a+2-(2a+2)1/2

4) For any linear and decreasing utility function, we have:

k
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Proposition 20 Consider any number of candidates a and any (k,v)

such that qk> m � q1> n�m :

1 a(a+1)/2(a)1/2

E(u(R1)|a,k)> E(u(Rc)|a,k) > E(u(R2)|a,k)

1) For any decreasing utility function, we have:

k

E(u(Rc)|a,k)> E(u(R1)|a,k) > E(u(R2)|a,k)

1 a(a+1)/2(2a+2)1/2-1

E(u(R1)|a,k)> E(u(Rc)|a,k)> E(u(R2)|a,k) E(u(Rc)|a,k)> E(u(R1)|a,k) > E(u(R2)|a,k)

2) For any concave and decreasing utility function, we have:

k

E(u(R1)|a,k)> E(u(Rc)|a,k) > E(u(R2)|a,k)

1 aa1/2 (2a+2)1/2-1

3) For any convex and decreasing utility function, we have:

k

E(u(Rc)|a,k)> E(u(R1)|a,k) > E(u(R2)|a,k)

1 a

E(u(R1)|a,k)> E(u(Rc)|a,k)> E(u(R2)|a,k)
E(u(Rc)|a,k)

E(u(Rc)|a,k)> E(u(R1)|a,k) > E(u(R2)|a,k)
>E(u(R2)|a,k)E(u(R2)|a,k)

(2a+2)1/2-1

4) For any linear and decreasing utility function, we have:

k
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Proposition 21 Consider any number of candidates a and any (k,v)

such that qk > m > n�m � q1:

1 a

E(u(Rc)|a,k)> E(u(R1)|a,k) = E(u(R2)|a,k)
>E(u(R2)|a,k)E(u(R2)|a,k)

For any linear and decreasing utility function, we have:

k

5.2.3 Welfare analysis: The optimal k

De�nition 16 Consider the Polarized Proposers Model. A pair (k; v) 2 f1; :::; ag �
f1; :::; kg satis�es the egalitarian criterion if jm

n
E(u1(R1)jk; v; a)+ n�m

n
E(u2(R2)jk; v; a)�

E(uc(Rc)jk; v; a)j
� jm

n
E(u1(R1)jk�; v�; a)+n�m

n
E(u2(R2)jk�; v�; a)�E(uc(Rc)jk�; v�a)j for every (k�; v�) 2 f1; :::; ag�

f1; :::; k�g:We denote (ke; ve) the largest (k; v) 2 f1; :::; ag�f1; :::; kg that satis�es the egal-
itarian criterion:

Proposition 22 In the domain of all pairs (k; v) such that m � qk > n � m; we have
that:

1) E(Rcjk; a) > m
n
E(R1jk; v; a) + n�m

n
E(R2jk; v; a) for every k < � 1;

2) m
n
E(R1jk; v; a) + n�m

n
E(R2jk; v; a) = E(Rcjk; a) if k = � 1 is an integer number;

3) m
n
E(R1jk; v; a) + n�m

n
E(R2jk; v; a) < E(Rcjk; a) for every k > � 1:

where � 1 = m
n

�
n
m
+ (a+ 1)�

p
n
m
(2� n

m
) + (2a+ 1) + a2( n

m
� 1)2

�

Proof. Given that m � qk > n�m; by Proposition 18, we have that E(R1jk; v; a) =
(a+1)
a�k+2 ;

E(R2jk; v; a) = � (a+1)(a�k+1)
a�k+2 and E(Rcjk; v; a) = (a�k+22

): Notice that:

jm
n
E(R1jk; v; a) + n�m

n
E(R2jk; v; a)�E(Rcjk; v; a)j is single dipped and reaches the min-

imum when k = � 1:When k = � 1, we have that jmnE(R1jk; v; a) +
n�m
n
E(R2jk; v; a) �

E(Rcjk; v; a)j = 0:
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Proposition 23 In the domain of all pairs (k; v) such that qk > m � q1 > n � m; we
have that:

1) E(Rcjk; a) > m
n
E(R1jk; v; a) + n�m

n
E(R2jk; v; a) for every k < � 2;

2) m
n
E(R1jk; v; a) + n�m

n
E(R2jk; v; a) = E(Rcjk; a) if k = � 2 is an integer number;

3) m
n
E(R1jk; v; a) + n�m

n
E(R2jk; v; a) < E(Rcjk; a) for every k > � 2:

where � 2 =
m
n

2m
n
�1
�
(a� 1)� a n

m
+
p

n
m
(2� n

m
) + (2a+ 1) + a2( n

m
� 1)2

�

Proof. Given that qk > m � q1 > n � m; by Proposition 18, we have that

E(R1jk; v; a) = k+1
2
; E(R2jk; v; a) = 2a�k+1

2
and E(Rcjk; v; a) = a+1

k+1
:

Notice that

jm
n
E(R1jk; v; a) + n�m

n
E(R2jk; v; a)�E(Rcjk; v; a)j is single dipped and reaches the min-

imum when k = � 2: When k = � 2; we have that jmnE(R1jk; v; a) +
n�m
n
E(R2jk; v; a) �

E(Rcjk; v; a)j = 0:

Corollary 9 Consider the Polarized Proposers Model and suppose that 
1 = 
2 = 
c = 0:

(ke; ve) 2 f(b� 1c ; b� 1c)); (d� 1e ; d� 1e); (b� 2c ; v2(b� 2c)); (d� 2e ; v2(d� 2e))g:
where

� 1 =
m
n

�
n
m
+ (a+ 1)�

p
n
m
(2� n

m
) + (2a+ 1) + a2( n

m
� 1)2

�
;

� 2 =
m
n

2m
n
�1
�
(a� 1)� a n

m
+
p

n
m
(2� n

m
) + (2a+ 1) + a2( n

m
� 1)2

�
;

v2(k) = maxffv�f1; :::; kgjqk > m � q1 > n�mg [ f1gg:

Example 19 shows that the egalitarian k under the Polarized Proposers Model is not

larger than egalitarian k under homogeneous committee. Moreover, the egalitarian k is

lower as more polarized is the committee. The example also shows that, di¤erent from

the homogenous committee case, the egalitarian k does not maximize the weighted the

sum of expected utilities.

Example 20 Let a = 10; n = 7, m = 5 and 
1 = 
2 = 
c = 0. Applying Corollary 9,

we have that � 1 = 4:4633; � 2 = 1:919,v2(b� 2c) = 1 and v2(d� 2e) = 1: Hence, (ke; ve) 2
f(4; 4); (5; 5); (1; 1); (2; 1))g: In Table 1, we can see that (ke; ve) = (2; 1): Now, assume that
m = 6: Again, applying Corollary 9, we have that � 1 = 6:1643, � 2 = 2:7699, v2(b� 2c) = 1
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and v2(d� 2e) = 1: Hence, (ke; ve) 2 f(6; 6); (7; 7); (2; 1); (3; 1))g: The reader can check in
Table 2 that (ke; ve) = (6; 6): Notice that as the size of the majority increases from 5 to 6,

the egalitarian k increases from 2 to 6. In the homogeneous commitee case, the optimal k

would be 7. Notice also the chooser´ s payo¤ increases as the parameter v and the size of

the majority m decrease and k increases.
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6 Concluding Remarks

We generalize Barberà and Coelho (2010) characterization of the strong Nash equilibrium

outcomes of the game induced by the rule of k names. We provide necessary and su¢ cient

conditions of a candidate to be a strong Nash equilibrium outcome of the Constrained

Chooser Game when the screening rule for k names belongs to a family of v�votes
screening rule for k names. A screening rule for k names is a v�votes screening rule for k
names if it can be described as follows: Each proposer votes for v candidates and the list

has the names of the k most voted candidates, with a tie breaking rule when needed. Our

characterization is based on two parameters of the screening rule for k names. These two

parameters measure in two di¤erent dimensions the size of a winning coalition. The �rst

parameter, qk, is the size of the smaller coalition that is able to impose all the k names

of the list. The second parameter, q1, is the size of the smaller coalition that is able to

impose at least one name in the list. We show that the chooser´s payo¤ is a increasing

function on the size of list and level of polarization of the proposers preferences and it is

decreasing on parameter v of the screening rule.

Our second perspective builds on what we learn about equilibria, but address a more

aggregate question: what is the performance of each of these rules "in average"? More

speci�cally, we study the agents´s payo¤ distributions from applying di¤erent v-rules of

k names. Based on these payo¤ distributions, we characterize the optimal k and the

screening rule according to utilitarian and egalitarian criteria.

While we do not provide in this paper an endogenous explanation for the choice of k,

it turns out that the optimal k is a function of players´ degree of risk aversion. If there

is only one proposer and the agents are risk neutral, the k that minimizes the sum of

expected utility for the chooser and for the proposer is also the one that tends to equalize

these two values.
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Appendix

Proof of Proposition 1. Take any coalition Q � N with #jQj = q and any

subset of candidates B � A with #jBj = k. Suppose that the members of coalition

Q coordinates their votes in order to elect B. The worst scenario is the one where the
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complementary coalition NnQ vote all together for some a 2 A=B; it implies that a will
receive n � q votes. Given this worst scenario, the best coalition Q can do to ensure

the selection of B is to spread equally, as much as possible, their v:q votes among the

k candidates in B, given this strategy, the number of votes that any candidate in B

receives is b qv
k
c or qv

k
: Thus, the set B will be elected if b qv

k
c > n � q. By de�nition,

qk is the minimum q that the following inequality holds: b qv
k
c > n � q. It implies that

qk = d kn
(k+v)

e+ I(bvd
kn

(k+v)
e

k
c � n� d kn

(k+v)
e); where I denotes the indicator function. Thus

the �rst part of the proposition is established

Take any coalition Q � N with #jQj = q and any candidate a 2 A. Suppose that the
members of coalition Q coordinates their votes in order to ensure a as one of ks selected

names. The worst scenario is the one where the complementary coalition NnQ distribute
equally ,as much as possible, their v(n� q) among others k candidates,some B � A=fag
with #jBj = k; it implies that at least one candidate in B receives b (n�q)v

k
c votes. Given

this worst scenario, the best response of coalition Q to ensure the inclusion of a is to

all together vote for a, given this strategy, a candidate a will receives q votes. Thus,

candidate a will be one k-listed names if q > b (n�q)v
k
c. By de�nition, q1 is the minimum

q that this inequality holds. It implies that q1 = d vn
(k+v)

e + I( vn
(k+v)

= d vn
(k+v)

e); where I
denotes the indicator function.

Proof of Proposition 2. Suppose that candidate x is the outcome of a strong Nash

equilibrium of the Constrained Chooser Game. In any strong Nash equilibrium where x is

the outcome, the screened set is such that x is the best candidate in this set according to

the chooser�s preferences. So, it implies that x is a chooser�s (#A� k+1)-top candidate.
Take any candidate among those that are chooser�s (#A�k+1)-top candidates and denote
him by y and Y any list with k names where y is the chooser best candidate in Y, notice

that y is not considered better than x by any coalition with at least qk(Y ) candidates.

Otherwise, this coalition could impose Y, preventing x being elected. So, If y is a chooser�s

(#A�k + 1)-top candidate then #fi 2 N jy �i xg < qk(Y ) for any Y 2 Ak such that y is
the chooser best candidate in Y. Now, we need to show that if a candidate y is the chooser

best candidate then #fi 2 N jy �i xg < q1(y). Suppose, by contradiction, that it is not
true then #fi 2 N jy �i xg � q1(y). Let denote C1 � fi 2 N jy �i xg;so #C1 � q1(y):

This is a contradiction, because the coalition of proposers in C1 would be able to impose

(since #C1 � q1(y)) the inclusion of y in the list and the chooser would select it instead
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of x. Hence, if y the chooser�s best candidate, we have that #fi 2 N jy �i xg < q1(y).
Proof of Propostion 3. Suppose that a candidate x is one of the chooser´s

(#A � k + 1)-top candidates, Y 2 Ak such that x is the chooser best candidate in X
and qk(X) proposers rank x highest. Now let us show that there is a strategy pro�le that

sustains x as a strong Nash equilibrium outcome. Let C � N be the set of proposers

that rank highest x, so #C � qk(X): By de�ntion of qk(Y ), there exists mC 2 MC

such that for every pro�le of the complementary coalition mNnC 2 MNnC we have that

Sk(mC ;mNnC) = X. Consider any strategy pro�le, where the coalition C uses mC : At

this strategy pro�le X will be selected and x will be the winning candidate indepedently

of the actions of the complementary coalition. Thus, there is no coalition of proposers

that has incentives in deviating. Therefore, this strategy pro�le sustains x as a strong

Nash equilibrium outcome. Now let us show that x is the unique strong Nash equilibrium

outcome. Suppose by contradiction that there is a strategy pro�le that sustains y 2 Anfxg
as strong Nash equilibrium outcome. By Proposition 2, it implies #fi 2 N jx �i yg <
qk(X) and y is a chooser�s (#A� k + 1)-top candidate. It is a contradiction since x is a
qk(X)-Condorcet winner over the set of the chooser�s (#A� k + 1)-top candidates.
Proof of Proposition 4. Suppose that a candidate x is a n� bnv

2k
c+ 1�Condorcet

winner over the set of chooser�s (#A� k+1)-top candidates. Now let us show that there
is a strategy pro�le that sustains x as a strong Nash equilibrium outcome. Take any set

B � A with #jBj = k where x is chooser best candidate in the set (this set only exists
because x is a chooser�s (#A� k + 1)-top candidate). Consider a strategy pro�le, where
each candidate in B receives at least bnv

k
c votes and all the candidates in AnB receive zero

votes. Notice that the candidates in B will form the chosen list: Then, candidate x will be

elected since he is the best chooser´s candidate in the chosen list. In order to change this

result, the only way is to avoid the inclusion of x in the list or substituting another listed

name by a candidate considered better that x by the chooser. A necessary condition

to make this change would require to transfer at least bnv
2k
c votes of a candidate in B

to another candidate in A=fBg. So, any coalitions with size smaller than bnv
2k
c cannot

avoid the inclusion of x in the chosen list. Notice that any coalition with size higher

or equal to bnv
2k
c does not have any incentive to deviate, since there is no y 2 Anfxg

among the chooser�s (#A � k + 1)-top candidates such that #fi 2N jy �i xg � bnv
2k
c

(recall that only the chooser�s (#A � k + 1)-top candidates can be the chooser�s best
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name among the candidates of a set with cardinality k ). Otherwise, x would not be a

n�bnv
2k
c+1�Condorcet winner over the set of the chooser�s (#A�k+1)-top candidates.

Therefore, this strategy pro�le is a strong Nash equilibrium of the Constrained Chooser

Game.

Now let us show that x is the unique strong Nash equilibrium outcome. First notice

n� bnv
2k
c + 1 � qk (Because any coalition with size higher than n� bnv2k c + 1 can impose

all the k names in the list), so x is also a qk�Condorcet winner over the set of chooser�s
(#A � k + 1)-top candidates. Suppose by contradiction that there is a strategy pro�le
that sustains y 2 Anfxg as strong Nash equilibrium outcome. By Proposition 2, it implies
#fi 2 N jx �i yg < qk and y is a chooser�s (#A�k+1)-top candidate. It is a contradiction
since x is a qk-Condorcet winner over the set of the chooser�s (#A�k+1)-top candidates.

Proof of Proposition 5. Suppose that a candidate x is the chooser´s top candidate

and it is also a q1(x)�Condorcet winner over the set of chooser�s (#A � k + 1)-top
candidates. First let us show that there is a strategy pro�le that sustains x as a strong

Nash equilibrium outcome. Consider the strategy pro�le, where all proposers votes for x.

Notice that x will be in the chosen list.

Then, candidate x will be elected since he will be in the list and he is the chooser´s top

candidate. The only way to change this result is to avoid the inclusion of x in the chosen

list. So, any coalitions with size smaller than n� q1(x) cannot avoid the inclusion of x in
the chosen list, because the complementary coalition would have size higher than q1(x).

Notice that any coalition with size higher or equal to n � q1(x) + 1 does not have any
incentive to deviate, since there is no y 2 Anfxg among the chooser�s (#A� k + 1)-top
candidates that is considered better than x by all proposers in the coalition (recall that

only the chooser�s (#A � k + 1)-top candidates can be the chooser�best name among
the candidates of a set with cardinality k). Otherwise, x would not be a q1(x)-Condorcet

winner over the set of the chooser�s (#A�k+1)-top candidates. Therefore, this strategy
pro�le is a strong Nash equilibrium of the Constrained Chooser Game.

Now let us show that x is the unique strong Nash equilibrium outcome. Suppose by

contradiction that there is a strategy pro�le that sustains y 2 Anfxg as strong Nash
equilibrium outcome. By Proposition 2, it implies that y is a chooser�s (#A� k+ 1)-top
candidate and #fi 2 N jx �i yg < q1(x). It is a contradiction since x is a q1(x)-Condorcet
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winner over the set of the chooser�s (#A� k + 1)-top candidates.
Proof of Proposition 6. First notice that given that chooser´s 1-top candidate is

a strong Nash equilibrium outcome under a v��votes screening rule for k names, it implies
that any strategy pro�le where all proposers votes for x is a strong Nash equilibrium.

Take any strategy pro�le where all voters vote for x, and call bym�. Given that it is a strong

Nash equilibrium, there is no coalition of voters that can make a pro�table deviation. The

voters that would wish to avoid the election of x are those that prefer another chooser�s

(#A�k+1)-top candidate to x (recall that only the chooser�s (#A�k+1)-top candidates
can be the chooser�best name among the candidates of a set with cardinality k ).The

only way to avoid the election of x would be to avoid the inclusion of x in the chosen list.

Take any chooser�s (#A � k + 1)-top candidate and call it by y. If all the voters that
prefer y to x deviate from m�by do not vote for x, x would continue to have enough votes

to be one name of k listed names. Otherwise, the strategy pro�le where all the voters

vote for x would no be a strong nash equilibrium.

Now let us show that x is also a strong Nash equilibrium any ev�votes screening rule for
k names where ev < v�. We need to show that there is a strategy pro�le that sustains x as
strong Nash equilibrium outcome under ev�votes screening rule for k names.
Take any strategy pro�le where all voters vote for x and call this strategy by em. So,
x will be one of k listed name and it will be the elected candidate. We need to show

that there is no coalition of voters that can make a pro�table deviation under m�. Given

m�and em, notice that it is more di¢ cult to make a pro�table deviation under ev�votes
screening rule for k names than v��votes screening rule for k names. Because, under aev�votes screening rule for k names, any coalition of voters that would have incentive to
avoid the election of x has less votes to distribute among the k candidates in order to

avoid the inclusion of x in the list. Thus, given that there exists no coalition that can

make a pro�table deviation under m�, it implies that there exists no coalition that can

make a pro�table deviation under em. Therefore, x is a strong Nash equilibrium outcome

under ev�votes screening rule for k names.
Proof of Proposition 8. Let x be an outcome of a strong Nash equilibrium of

the Constrained Chooser Game. By Condition 1 of Proposition 2, it implies that x is a

chooser�s (#A� k + 1)-top candidate.
Suppose that m � qk: Since m � qk; the voters in the majoritarian group can impose all
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the names in the list . Notice that there exists no candidate among those that are chooser�s

(#A�k+1)-top candidates that is considered better than x by the majoritarian group of
voters. Otherwise, this group could impose a list with this candidate in which he would be

the chooser´s preferred candidate, since he is also one of the chooser�s (#A�k+1)-top can-
didates, preventing x being elected. So, if y is a chooser�s (#A�k+1)-top candidate then
#fi 2 N jy �i xg < qk. Therefore, the equilibrium outcome of the Constrained Chooser

Game is the best alternative of the majoritarian group out of chooser´s #A�k + 1-top
alternatives. Let candidate x be the best alternative of the majoritarian group out of

chooser´s #A�k + 1-top alternatives. Let B 2 Ak be a set where x is the chooser best
candidate in this set. Since m � qk and by de�nition of qk; there is a strategy pro�le that
can be adopted by the majoritarian group that leads the election of x and the minoritar-

ian group is unable to change it. Notice that the majoritarian group will not incentive

in changing outcome. Therefore, there exists an strategy pro�le that sustains x as strong

Nash equilibrium outcome.

Suppose that qk > m:

1) Suppose that the tie breaking criterion coincides with the chooser´s preferences over

the set of candidates or with the minoritarian group ´s preferences over the set of candi-

dates.

Notice chooser 1-top candidate cannot be considered better than x by one of the group

of proposers of voters. Since both groups could impose (since qk > m and chooser 1-top

candidate is also ranked higher than x according to the tie breaking criterion) the in-

clusion of the chooser 1-top in the selected list, preventing x being elected. In addition,

each group has the reverse preference pro�le of the other group. Thus, x needs to be the

chooser´s 1-top candidate. Suppose that every proposer cast a vote for x. Thus, x will

be in the selected list and it will be elected. No group can take out x from the selected

list by a unilateral deviation since both has size smaller than qk. Since both group has

the reverse preference pro�le of the other, they do not have incentive in jointly deviating

from this strategy pro�le. Therefore, this strategy pro�le sustains x as an strong Nash

equilibrium outcome.

2) Suppose that the tie breaking criterion coincides with the majoritarian group´s pref-

erences over the set of candidates. Suppose also that qk > m � q1 > n�m:
Notice that qk > m implies that minoritarian group can impose that the chosen list has
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at least one name among k-top candidates according the tie breaking criterion. Notice

that q1 > n �m implies that the majoritarian group can impose that the chosen list be

formed by the k-top candidates according the tie breaking criterion. Thus, x need to be

the chooser´s best alternative out of the majoritarian group´s k-top candidates. Now, we

need to prove that there exists a strategy pro�le that sustains x as an equilibrium out-

come. Suppose the following strategy pro�le: the majoritarian group adopts a strategy

pro�le that can impose the selection of k-top candidates according the tie breaking crite-

rion and the minoritarian group adopts a strategy pro�le that can impose the chooser best

candidate among the k-top candidates according to the tie breaking criterion. In order to

change the outcome, one of the group could try to block the inclusion of x, but neither of

them alone manage to do it. Notice also that only the majoritarian group would be able

to include another candidate better than x to the chooser. But this candidate would be

worse than x for the majoritarian group. Therefore, there exists not coaltion of proposers

that has incentive in deviating. Thus, we have proved that there exists a strategy pro�le

that sustains x as an equilibrium outcome.

In order to �nish the proof, suppose that qk > m > n �m � q1. Notice that since both
groups of voters have size higher than q1, both groups can impose a list with the chooser´s

1-top candidate. Since each group has the reverse preference pro�le of the other group.

The equilibrium outcome needs to be the chooser´s 1-top candidate. Suppose that every

proposer cast a vote for x. Thus, x will be in the selected list and it will be elected. No

group can take out x from the selected list by a unilateral deviation since both has size

smaller than qk. Since both group has the reverse preference pro�le of the other, they do

not have incentive in jointly deviating from this strategy pro�le. Therefore, this strategy

pro�le sustains x as an strong Nash equilibrium outcome.

Proof of Proposition 10. Given that u(�) is decreasing on r, we only need to prove
that:

1) Fc(xjk; a) �rst order stochastically dominates Fp(xjk; a) for every k < a+1
2
;

2) Fp(xjk; a) �rst order stochastically dominates Fc(xjk; a) for every k > a� 2
p
a+ 1:

By de�nition of �rst order stochastic domination, it is su¢ cient to show that:

1) If k < a+1
2
then Fp(xjk; a) � Fc(xjk; a) for every x 2 f1; :::; ag:
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2) If k > a� 2
p
a+ 1 then Fc(xjk; a) � Fp(xjk; a) for every x 2 f1; :::; ag

Let us �rst prove that if k < a+1
2
then Fp(xjk; a) � Fc(xjk; a) for every x 2 f1; :::; ag:

Take any k� 2 f1; :::; a+1
2
� 1g: Since k� < a+1

2
, we have that a � k� + 1 > k�:Thus,

Fp(xjk�; a) = Fc(xjk�; a) = 1 for every x 2 fa � k� + 1; :::; ag and Fp(xjk�; a) = 1 >

Fc(xjk�; a) for every x 2 fk�; :::; a�k�g: Now let us examine the case where x 2 f1; :::; k��
1g: Consider x = k� � 1:
Fc(x = k

� � 1jk�; a) = k��1
a�k�+1 <

k��1
k�

Fp(x = k
� � 1jk�; a) =

k��1X
j=1

( a�ja�k�)
( a
a�k�+1)

= 1� 1

( a
a�k�+1)

� 1� 1

( a
a�1)

� 1� 1
k� =

k��1
k�

Thus, Fp(x = k� � 1jk�; a) > Fc(x = k� � 1jk�; a):
Consider x = 1 :

Fp(x = 1jk�; a) = a�k�+1
a

Fc(x = 1jk�; a) = 1
a�k�+1

Notice that a�k+1
a

> 1
a�k+1 for every k < a � 2

p
a + 1: Thus, Fp(x = 1jk�; a) > Fc(x =

1jk�; a) since k� � a+1
2
< a� 2

p
a+ 1:

Given that, by de�nition, Fp(xjk�; a) and Fc(xjk�; a) are strict increasing function in the
interval f1; :::; k� � 1g, Fp(x = 1jk�; a) > Fc(x = 1jk�; a) and Fp(x = k� � 1jk�; a) >
Fc(x = k

� � 1jk�; a); we have that:
Fp(xjk; a) > Fc(xjk; a) for every x 2 f1; :::; k� � 1g.
Therefore, we have that Fp(xjk; a) � Fc(xjk; a) for every x 2 f1; :::; ag.
To �nish we need to prove that if k > a � 2

p
a + 1 then Fc(xjk; a) � Fp(xjk; a) for every

x 2 f1; :::; ag:
Take any k� 2 fa� 2

p
a+2; :::; ag:Since k > a� 2

p
a+1, we have that a�k�+1 < k�:Thus,

Fp(xjk�; a) = Fc(xjk�; a) = 1 for every x 2 fk�; :::; ag and Fc(xjk�; a) = 1 > Fp(xjk�; a) for
every x 2 fa� k� + 1; :::; k� � 1g: Now let us examine the case where x 2 f1; :::; a� k�g:
Consider x = 1 :

Fp(x = 1jk�; a) = a�k�+1
a

Fc(x = 1jk�; a) = 1
a�k�+1

Notice that a�k+1
a

< 1
a�k+1 for every k > a� 2

p
a+ 1: Thus, k� > a� 2

p
a+ 1 implies that

Fc(x = 1jk�; a) > Fp(x = 1jk�; a):
Given that Fp(xjk�; a) and Fc(xjk�; a) are strict increasing function in the x 2 f1; :::; a�
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k� + 1g, Fc(x = 1jk�; a) > Fp(x = 1jk�; a) and Fc(x = a � k� + 1jk�; a) = 1 > Fp(x =

a� k� + 1jk�; a); we have that:
Fc(xjk�; a) � Fp(xjk�; a) for every x 2 f1; :::; a� k� + 1g.
Thus, we have that Fp(xjk; a) � Fc(xjk; a) for every x 2 f1; :::; ag. Therefore, the proof
is established.

Proof of Proposition 11. Suppose that a + 2 �
p
2a+ 2 is an integer and take

any strict decreasing and concave utility function u(�). Let k > a + 2 �
p
2a+ 2 then

k > a� k + 1 and, by Proposition 9, E(Rcjk; a) < E(Rpjk; a): Notice that k > a� k + 1;
so it implies that fx 2 f1; :::; agjProb(rc = xjk; a) > 0g � fx 2 f1; :::; agjProb(rp =
xjk; a) > 0g. Thus, Fc(xjk; a) is more concentrated than Fp(xjk; a) and, in additional, it
has a smaller mean. Therefore, E(u(Rc)) > E(u(Rp)):

Take now any strict decreasing and convex utility function u(�). Take any k 2 [a+1
2
; a +

2 �
p
2a+ 2)then k � a � k + 1 and, by Proposition 10, E(Rpjk; a) < E(Rcjk; a): No-

tice that k > a � k + 1; so it implies that fx 2 f1; :::; agjProb(rc = xjk; a) > 0g �
fx 2 f1; :::; agjProb(rp = xjk; a) > 0g. Thus, Fp(xjk; a) is at least as concentrated than
Fc(xjk; a) and, in additional, it has a smaller mean. Therefore, E(u(Rp)) > E(u(Rc)):

Notice that for k < a+1
2
, Proposition 9 states that E(u(Rp)) > E(u(Rc)). Therefore, the

proof is established.

Proof of Proposition 12. First a > t(a; 
c; 
p) > 1 comes from the fact that

E(up(Rp)ja; k = 1) > E(uc(Rc)ja; k = 1) and E(uc(Rc)ja; k = a) > E(up(Rp)ja; k = a):
Thus, we only need to show that for any k � a+2�

p
2a+ 2; we have that E(uc(r)ja; k) >

E(up(r)ja; k): First let k = a + 2 �
p
2a+ 2, then we have that E(Rcja; k) = E(Rpja; k)

and V ar(Rpja; k) = 3( 2
p
2a+2�1)2
(2a+1)

V ar(Rcja; k):
E(u(Rc)ja; k)� E(u(Rp)ja; k) = �
c(V ar(Rcja; k)) + E(Rcja; k)2) + 
p(V ar(Rpja; k))
+ E(Rpja; k)2) + (
c � 
p) =
= �
c(V ar(Rcja; k)+E(Rcja; k)2)+
p(

3( 2
p
2a+2�1)2
(2a+1)

V ar(Rcja; k)+E(Rcja; k)2)+(
c�
p)
= (
p � 
c)(E(Rcja; k)2 � 1) + (
p

3( 2
p
2a+2�1)2
(2a+1)

� 
c)V ar(Rcja; k):
Thus; E(u(Rc)ja; k) � E(u(Rp)ja; k) > 0 since 3( 2

p
2a+2�1)2
(2a+1)

> 1; E(Rcja; k)2 > 1 and 0 <

c � 
p: So, it is true for any k � a+2�

p
2a+ 2, thus 1 < t(a; 
c; 
p) < a+2�

p
2a+ 2:

Now, if 
c �
3( 2
p
2a+2�1)2
(2a+1)


p > 0; we have that E(up(r)ja; k) > E(uc(r)ja; k) under k =
a + 2 �

p
2a+ 2: So, it is true for any k � a + 2 �

p
2a+ 2, thus a > t(a; 
c; 
p) >

a+2�
p
2a+ 2: The proof of the other cases is similar and for this reason is ommited.
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Proof of Proposition 15. Equation 7 below gives the formula of the sum of

agents´expected utilities:

wE(up(Rp)jk; a) + (1� w)E(uc(Rc)jk; a) = � w(a+1)
(a�k+2) �

w
p(a+k+1)(a+1)

(a�k+2)(a�k+3) + w
p

� (1� w) (a�k+2)
2

� (1�w)(a�k+2)
2

� 
c(1�w)(a�k+2)(2a�2k+3)
6

+ (1� w)
c (13)

Notice also that expression (13) implies expressions (14) and (15) below:

wE(up(Rp)jk; a)�wE(up(Rp)jk � 1; a) = � w(a+1)
(a�k+3)(a�k+2) �

w
p(3a+k+4)(a+1)

(a�k+2)(a�k+3)(a�k+4) (14)

(1� w)E(uc(Rc)jk; a)� (1� w)E(uc(Rc)jk � 1; a) = (1�w)(4a
c�4k
c+9
c+3)
6

(15)

After summing up (14) and (15), we have that:

[wE(up(Rp)jk; a) + (1� w)E(uc(Rc)jk; a)]�
[wE(up(Rp)jk � 1; a) + (1� w)E(uc(Rc)jk � 1; a)] =

= � w(a+1)
(a�k+3)(a�k+2) �

w
p(3a+k+4)(a+1)

(a�k+2)(a�k+3)(a�k+4) +
(1�w)(4a
c�4k
c+9
c+3)

6
(16)

Hence with the help of expression (16) it can be easily proved that the optimal k can be

characterized as follows: bk is the largest k�2 f1; :::; ag such that (a+1)(a�k0+4)+
p(3a+k0+4)(a+1)
(a�k+3)(a�k0+2)(4a
c�4k0
c+9
c+3)

�

(1�w)
w

1
6
and

(a+1)(a�k0+4)+
p(3a+k0+4)(a+1)
(a�k+3)(a�k0+2)(4a
c�4k0
c+9
c+3)

� (1�w)
w

1
6
for any k > k�.

Moreover if
(a+1)(a�k0+4)+
p(3a+k0+4)(a+1)

(a�k+3)(a�k0+2)(4a
c�4k0
c+9
c+3)
= (1�w)

w
1
6
then k�is a twin-dips.

Proof of Proposition 16. First notice that for every k we have that:

E(up(Rp)ja; k)E(uc(Rc)ja; k) = a+1
2

The equality above implies that

(E(up(Rp)ja; k) + E(uc(Rc)ja; k))2 = E(up(Rp)ja; k)2 + E(uc(Rc)ja; k)2 + (a+ 1)
The expression above implies that, given that E(up(Rp)ja; k) +E(uc(Rc)ja; k) < 0; a k 2
f1; :::agmaximizesE(up(Rp)ja; k)+E(uc(Rc)ja; k) if and only if it minimizesE(up(Rp)ja; k)2+
E(uc(Rc)ja; k)2:
Notice also that a

(E(up(Rp)ja; k)� E(uc(Rc)ja; k))2 = E(up(Rp)ja; k)2 + E(uc(Rc)ja; k)2 � (a+ 1):
The expression above implies that a k 2 f1; :::agmaximizesE(up(Rp)ja; k)2+E(uc(Rc)ja; k)2

if and only if it maximizes (E(up(Rp)ja; k)� E(uc(Rc)ja; k))2:
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Therefore, a k 2 f1; :::ag maximizes E(up(Rp)ja; k) + E(uc(Rc)ja; k) if and only if mini-
mizes jE(up(Rp)ja; k)� E(uc(Rc)ja; k))j:
Proof of Proposition 18. By Proposition 8, if m � qk > n �m then the strong

Nash equilibrium outcome is the best alternative of individuals in the majoritarian group

out of chooser´ s (#A� k + 1)-top alternatives;
Thus, the expected ranking of the equilibrium outcome according to the majoritarian

group´s distribution fo preferences:

E(u1(r1)jm � qk > n�m) = (a+1)
a�k+2

The expected utility of the minoritarian group´s distribution fo preferences is: E(u2(r2)jm �
qk > n�m) = �(a+ 1)� E(u1(r1)jm � qk > n�m): Thus,
E(u2(r2)jm � qk > n�m) = � (a+1)(a�k+1)

a�k+2

The expected ranking of the equilibrium outcome according to the chooser´s distribution

of preferences is:a�k+2
2

E(uc(Rc)jm � qk > n�m) = �a�k+2
2

Suppose qk > m > n � m � q1: By Proposition 8, if qk > m � q1 > n � m then the

strong Nash equilibrium outcome is the chooser´s best alternative out of the majoritarian

group´s k-top candidates. Thus:

E(u1(r1)jqk > m > n�m � q1) = �k+1
2

E(u2(r2)jqk > m > n�m � q1) = �2a�k+1
2

E(uc(Rc)jqk > m > n�m � q1) = �a+1
k+1

By Proposition 8, if qk > m > n�m � q1 then the equilibrium outcome is the chooser´s

top alternative.Thus, the chooser has all the power:

E(u1(r1)jqk > m > n�m � q1) = � (a+1)
2

E(u2(r2)jqk > m > n�m � q1) = � (a+1)
2

E(uc(Rc)jqk > m > n�m � q1) = �1.
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