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1. Introduction

The private provision of public goods is a subject of ongoing interest in several
important strands of the economics literature ranging from taxation to political
economy. Private contributions to public goods are important phenomena for many
reasons. Voluntary contributions by members of a community are vital for the provi-
sion of essential social infrastructure, whilst at the aggregate level charitable giving
accounts for a significant proportion of GDP in many countries. The seminal con-
tribution of Bergstrom, Blume, and Varian (1986), built on an earlier striking result
by Warr (1983), provides a rigorous investigation of the standard model of private
provision of public goods.1 Their main results, with sharp testable implications,
are the neutrality of both aggregate public good provision and private good con-
sumption to income redistribution among contributors and the complete crowding
out of government contributions financed by lump-sum taxes preserving the set of
contributors.

The findings of the private provision model rest on the assumption that each con-
sumer benefits from the public good provisions of all other consumers. Often, for
various public goods such as information gathering and new products experimen-
tation, a consumer may benefit from provisions accessible only through his social
interactions or geographical position. For instance, there is strong empirical evidence
that farmers perceive the experimentation of a new technology as a public good and
adjust their experimentation level in the opposite direction to their neighbors’ pro-
vision (see, for example, Conley and Udry (2010)). Moreover, much consumption is
a social activity and consumers often first seek information from friends, colleagues,
or even their various online communities before sampling the products themselves.

In this paper, we investigate the private provision of public goods where consumers
interact within a fixed network structure and benefit only from their direct neighbors’
provisions. Recently, the economics of networks has gained prominence as a new ap-
proach to understand some of the patterns governing various economic interactions
(see Goyal (2007) and Jackson (2008)). The main insights on formation and stability
of networks are powerful predictive tools to both positive and normative analysis in
many fields, including development economics and labor economics. Public goods
provision on networks was first studied by Bramoullé and Kranton (2007). Their
analysis, under complete information, distinguishes between specialized and hybrid
contribution equilibria and shows that specialized contribution equilibria correspond
to the maximal independent sets of the network. Galeotti, Goyal, Jackson, Vega-
Redondo, and Yariv (2010) show that the possibility that consumers hold partial

1There is a special issue in the Journal of Public Economics celebrating the 20th anniversary of

Bergstrom, Blume, and Varian (1986).
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information about the network can shrink considerably the potentially large set of
equilibria that arise under complete information. Galeotti and Goyal (2010) study a
model of information sharing on a network where consumers simultaneously decide
on their information provision and connections.

Bramoullé, Kranton, and D’Amours (2011) introduce a new approach to inves-
tigate games of strategic substitutes on networks2 with linear best-reply functions.
The main contribution is to introduce a new network measure related to the lowest
eigenvalue of the adjacency matrix,3 which is a key for equilibrium analysis. At
the heart of their equilibrium analysis (existence requires a straightforward applica-
tion of Brouwer’s fixed point theorem), as in that of Bergstrom, Blume, and Varian
(1986), lies the proof of uniqueness of the Nash equilibrium. Bergstrom, Blume, and
Varian (1986) rely on the weak assumption of normality of private and public goods.4

On the other hand, Bramoullé, Kranton, and D’Amours (2011) place a bound on
the slope of the linear best-reply functions that relies on the lowest eigenvalue to
establish the uniqueness of a Nash equilibrium. The proof technique appeals to the
theory of potential games where consumers’ optimal strategies concur in a common
maximization problem of a potential function of which the strict concavity provides
the uniqueness of a Nash equilibrium.

In this paper, we present a general proof of existence and uniqueness of a Nash
equilibrium in the private provision of a public good on networks. We show that the
shared ground of Bergstrom, Blume, and Varian (1986) and Bramoullé, Kranton,
and D’Amours (2011) is beyond the trivial case of a complete network with linear
best-reply functions. Indeed, our existence and uniqueness results simultaneously

2The private provision of public goods falls into this category since a consumer has incentives

to adjust his public good provision in the opposite direction of his neighbors’ provisions.
3Such a measure has not been used previously in any of the fields related to networks, includ-

ing social networks, biology, and physics. Moreover, Bramoullé, Kranton, and D’Amours (2011)

provide an interesting discussion on the structural properties of the network that may a↵ect the

lowest eigenvalue.
4However, the many subtleties of the proof may not have fully revealed the intuition behind the

proof or shown what a familiar uniqueness argument is at work. For discussions and alternative

proofs, see, for example, Bergstrom, Blume, and Varian (1992), Fraser (1992), and Cornes and

Hartley (2007).
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extend similar results in Bergstrom, Blume, and Varian (1986) on the private pro-
vision to a network setting and in Bramoullé, Kranton, and D’Amours (2011) on
games of strategic substitutes to nonlinear best-reply functions. A crucial innovation
of this paper is the uniqueness proof technique, which is based on an adaptation of
Stiemke’s Lemma to the private provision of public goods.5 In our approach, we
overcome the lack of linear structure by resorting to a network-specific normality
assumption of both public and private goods which stipulates bounds on the nonlin-
ear best-reply functions. In addition, an inherent advantage of our proof technique
is that it applies directly to the original public good game and, therefore, it provides
insights on what is driving the uniqueness result in this class of games.

The closely related literature on clubs/local public goods also investigates the
strategic interactions underlying the formation of clubs and communities. If one
thinks of a network as a collection of clubs formed either by the edges or the nodes
then the public goods network literature and the club/local public goods literature
are essentially equivalent. However, such an equivalence is not very useful since
a network is then a collection of overlapping clubs and, so far, only a few papers
have explored the Nash equilibrium with overlapping clubs structure. Bloch and
Zenginobuz (2007) present a model of local public goods allowing spillovers between
communities, and hence violating one of Tiebout’s assumptions, which may be inter-
preted as a weighted network. Eshel, Samuelson, and Shaked (1998) and Corazzini
and Gianazza (2008) adapt Ellison’s (1993) local interaction model to public good
games played on a spatial structure, which in a network setting correspond to a
circulant network.

Of the policy questions that arise in connection with the private provision of public
goods, the one of paramount importance is the e↵ect of income redistribution. For a
complete network, the question has, to a large extent, been settled by the neutrality
result mentioned above. However, it appears that there has been no attempt in
the economics of networks literature to explore whether the neutrality result holds
beyond complete networks. To this e↵ect, we provide an innovative approach based
on the notion of main eigenvalue from spectral graph theory, due to Cvetković (1970),
and on Bonacich centrality, first introduced to economics in the seminal paper of
Ballester, Calvó-Armengol, and Zenou (2006), to show that the neutrality result will
not, generally, hold beyond regular networks. We also expand on the links between
main eigenvalues and Bonacich centrality to establish some results on the patterns
of changes in the aggregate public good provision following income redistribution in

5Stiemke’s Lemma, which is a strict version of Farkas–Minkowski’s Lemma, has been a funda-

mental tool to characterize arbitrage-free portfolios in asset pricing theory.
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some non-regular networks. Hence, we provide some useful predictions for the social
planner or the network designer on which to base redistributive policies.

The paper is organized as follows. In Section 2, we present the model of private
provision of public goods on networks. In Section 3, we establish the existence and
uniqueness of a Nash equilibrium. In Section 4, we investigate the local stability
of the Nash equilibrium. We explore the e↵ect of income provision and introduce
Bonacich centrality in Section 5 and we investigate the validity of the neutrality
result in networks in Section 6. Section 7 provides some comparative statics results
for the aggregate public good provision and Section 8 concludes the paper.

2. The model

There are n consumers embedded in a connected fixed network g. Let G =
[g

ij

] denote the adjacency matrix of the network g, where g

ij

= 1 indicates that
consumer i and consumer j are neighbors and g

ij

= 0 otherwise. In particular,
we assume that g

ii

= 0 for each consumer i = 1, . . . , n. Let N

i

= {j | g
ij

= 1}
denote the set of consumer i’s neighbors. The adjacency matrix of the network,
G, is symmetric with nonnegative entries and therefore has a complete set of real
eigenvalues (not necessarily distinct), denoted by �

max

(G) = �

1

� �

2

� . . . � �

n

=
�

min

(G), where �
max

(G) is the largest eigenvalue and �

min

(G) is the lowest eigenvalue
of G. By the Perron–Frobenius Theorem, it holds that �

max

(G) � ��

min

(G) > 0
and, in particular, the equality ��

min

(G) = �

max

(G) holds if and only if G is a
bipartite network. Moreover, there is a matrix V such that G = V DV

T

, where D =
diag(�

1

,�

2

, . . . ,�

n

) is a diagonal matrix whose diagonal entries are the eigenvalues of
G and V is a matrix whose columns, v

1

, v

2

, . . . , v

n

, are the corresponding eigenvectors
of G that form an orthonormal basis of Rn

.

The preferences of each consumer i = 1, . . . , n, are represented by the utility
function u

i

(x
i

, q

i

+ Q�i

), where x

i

is consumer i’s private good consumption, q
i

is
consumer i’s public good provision, and Q�i

=
P

j2Ni
q

j

is the sum of public good
provisions of consumer i’s neighbors. For simplicity, we assume the public good can
be produced from the private good with a unit-linear production technology. The
utility function u

i

is continuous, strictly increasing in both arguments, and strictly
quasi-concave. Consumer i faces the following maximization problem:

max
xi,qi

u

i

(x
i

, q

i

+Q�i

)

s.t. x

i

+ q

i

= w

i

and q

i

� 0,

where w
i

is his income (exogenously fixed). It follows from the strict quasi-concavity
that consumer i’s public good provision is determined by a (single-valued) best-reply
function f

i

. At a Nash equilibrium (q⇤
1

, q

⇤
2

, . . . , q

⇤
n

), every consumer’s choice is a best
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reply to the sum of his neighbors’ public good provisions, that is, q⇤
i

= f

i

(Q⇤
�i

) for
each consumer i = 1, . . . , n.

Following a standard modification in the public goods literature, the utility maxi-
mization problem can be rewritten with consumer i choosing his (local) public good
consumption, Q

i

, rather than his public good provision, q
i

, that is,

max
xi,Qi

u

i

(x
i

, Q

i

)

s.t. x

i

+Q

i

= w

i

+Q�i

and Q

i

� Q�i

.

If we ignore the last constraint Q

i

� Q�i

in the above maximization problem,
we obtain a standard utility maximization problem of consumer demand theory.
Hence a standard demand function for consumer i’s public good consumption can
be expressed by Q

i

= �

i

(w
i

+Q�i

), where w
i

+Q�i

may be interpreted as consumer
i’s “social income” and �

i

is the Engel curve for Q
i

. In view of this, acknowledging
the constraint Q

i

� Q�i

again leads to Q

i

= max{�
i

(w
i

+Q�i

), Q�i

}, which in turn
implies

q

i

= Q

i

�Q�i

= max{�
i

(w
i

+Q�i

)�Q�i

, 0} = f

i

(Q�i

). (2.1)

Hence, consumers can only contribute a positive amount of the public good deter-
mined by their own demand for the public good, which in turn is a function of their
(social) income and also their neighbors’ public good provision.

3. Existence and uniqueness of the Nash equilibrium

In this section, we shall prove the existence and uniqueness of the Nash equilibrium
for general networks and best-reply functions. In the case of a complete network,
Bergstrom, Blume, and Varian (1986) rely on the assumption of normality of private
and public goods to establish the existence and uniqueness of the Nash equilibrium.
We introduce the following network-specific normality assumption.

Network normality. For each consumer i = 1, . . . , n, the Engel curve �

i

is di↵er-
entiable and it holds that 1 + 1

�

min

(G)

< �

0
i

(·) < 1.

The network normality assumption places bounds on the marginal propensity to
consume the public good. Indeed, the left-hand-side inequality stipulates a strong
normality of the public good, which depends on the lowest eigenvalue of the adja-
cency matrix G, while the right-hand-side inequality is the standard normality of
the private good.

Theorem 3.1. Assume network normality. Then there exists a unique Nash equi-

librium in the private provision of public goods.
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Proof. The existence of a Nash equilibrium is guaranteed by Brouwer’s fixed
point theorem. Suppose there are two Nash equilibria q

1 = (q1
1

, q

1

2

, . . . , q

1

n

) 6=
(q2

1

, q

2

2

, . . . , q

2

n

) = q

2; then for each consumer i = 1, . . . , n, it holds that

q

1

i

= f

i

(Q1

�i

) = max{�
i

(w
i

+Q

1

�i

)�Q

1

�i

, 0}

and

q

2

i

= f

i

(Q2

�i

) = max{�
i

(w
i

+Q

2

�i

)�Q

2

�i

, 0}.
Since q

1 6= q

2 it follows that the set C = {i | Q1

�i

6= Q

2

�i

} 6= 6�. Moreover, from the
mean value theorem, for each consumer i 2 C there exists a real number �

i

such
that

�

i

(w
i

+Q

1

�i

)� �

i

(w
i

+Q

2

�i

) = �

0
i

(�
i

)(Q1

�i

�Q

2

�i

)

and hence

(�
i

(w
i

+Q

1

�i

)�Q

1

�i

)� (�
i

(w
i

+Q

2

�i

)�Q

2

�i

) = (1� �

0
i

(�
i

))(Q2

�i

�Q

1

�i

).

Let a = max
i2C{1� �

0
i

(�
i

)}; then it follows from the network normality assumption
that for each consumer i 2 C,

0 < 1� �

0
i

(�
i

)  a < � 1

�

min

(G)
.

For each consumer i = 1, . . . , n, define s

i

as follows:

s

i

=

⇢
1 if Q1

�i

 Q

2

�i

,

�1 otherwise.

Thus, for each consumer i = 1, . . . , n, it holds that

0  s

i

(q1
i

� q

2

i

) = s

i

(max{�
i

(w
i

+Q

1

�i

)�Q

1

�i

, 0}�max{�
i

(w
i

+Q

2

�i

)�Q

2

�i

, 0})
 s

i

((�
i

(w
i

+Q

1

�i

)�Q

1

�i

)� (�
i

(w
i

+Q

2

�i

)�Q

2

�i

))

 s

i

a(Q2

�i

�Q

1

�i

).

Rearranging terms, since q

1

i

6= q

2

i

at least for some i, it follows from the above
inequalities that6

0 < (q1 � q

2)(S,�(I + aG)S), (3.1)

where I is the identity matrix and S = diag(s
1

, s

2

, . . . , s

n

) is the diagonal matrix
whose diagonal entries are s

i

. The rest of the proof relies on a version of Stiemke’s
Lemma, as stated below.

6Consider x = (x1, x2, . . . , xn)T 2 Rn; then x � 0 if xi � 0 for each i = 1, . . . , n and x > 0 if

x � 0 and xi > 0 for some i.
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Stiemke’s Lemma. If A is an m⇥n real matrix, then one of the following mutually

exclusive alternatives holds true:

(1) There exists x 2 Rn

++

such that Ax = 0.

(2) There exists y 2 Rm such that yTA > 0.

Indeed, since inequality (3.1) implies alternative (2) holds for the matrix (S,�(I +
aG)S), it follows that there exists no x 2 R2n

++

such that (S,�(I + aG)S)x = 0.
That is, there exists no x

1

, x

2

2 Rn

++

with (I + aG)Sx
2

= Sx

1

which in turn implies
that (I + aG)S(Rn

++

) \ S(Rn

++

) = 6�
. By continuity, it holds that (I + aG)S(Rn

+

) \
S(Rn

++

) = 6�
. From Minkowski’s separating hyperplane theorem, there exists a

hyperplane with normal ⇡ 6= 0, and a scalar ↵ such that

(i) for all u 2 (I + aG)S(Rn

+

), ⇡ · u  ↵;
(ii) for all v 2 S(Rn

++

), ⇡ · v � ↵.

Since 0 belongs to the closure of the two sets, we can choose ↵ = 0. Moreover,
it follows from (ii) in the separation theorem that ⇡ 2 S(Rn

+

). Thus, it follows
from (i) that ⇡T (I + aG)⇡  0. Hence, (I + aG) is not positive-definite, which is a
contradiction. Therefore, there exists a unique Nash equilibrium.⇤

We have the following two corollaries:

Corollary 3.2. (Bergstrom, Blume, and Varian (1986)) Assume that g is the com-

plete network and that both private and public goods are normal goods. Then there

exists a unique Nash equilibrium.

Proof. When g is the complete network, it holds that �
min

(G) = �1.7 Thus, the
normality of both private and public goods implies the network normality assump-
tion and, hence, there exists a unique Nash equilibrium.⇤

7The adjacency matrix of the complete network is J � I, where J is the all-ones matrix. Since

J has eigenvalues n and 0 with multiplicities 1 and n � 1, respectively, we see that the complete

network has eigenvalues n� 1 and �1 with multiplicities 1 and n� 1.
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Corollary 3.3. (Bramoullé, Kranton, and D’Amours (2011)) Consider a linear

strategic substitute game such that for each consumer i = 1, . . . , n, it holds that

q

i

= max{1 � ↵

i

P
n

j=1

g

ij

q

j

, 0}, where ↵

i

2]0,� 1

�

min

(G)

[. Then there exists a unique

Nash equilibrium.

Proof. Observe that from (2.1), the linear strategic substitute game coincides with
the public good game where for each consumer i = 1, . . . , n, �0

i

(·) = 1 � ↵

i

and
w

i

= 1

1�↵i
. Since 1 � ↵

i

2]1 + 1

�

min

(G)

, 1[, it follows that the network normality
assumption is satisfied and, hence, there exists a unique Nash equilibrium.⇤

4. Stability of the Nash equilibrium

We shall now investigate the issue of stability of the Nash equilibrium. Stability is
of paramount importance to the study of comparative statics. If, following a small
perturbation of parameters, the new equilibrium can be reached by a dynamic ad-
justment process, then the comparative statics analysis is strengthened. To explore
the dynamic stability of the unique Nash equilibrium in the private provision of
public goods, we consider a myopic adjustment process defined for each consumer
i = 1, . . . , n, by

.

q

i

=
dq

i

dt
= µ

i

(f
i

(Q�i

)� q

i

),

where µ

1

, µ

2

, . . . , µ

n

> 0 are the adjustment speeds (see Dixit (1986)).
Let (q⇤

1

, q

⇤
2

, . . . , q

⇤
n

) denote the unique Nash equilibrium. Before investigating sta-
bility, we partition the consumers into three sets: the set of active contributors

A = {i | �
i

(w
i

+Q

⇤
�i

) > Q

⇤
�i

}
formed of consumers that would still contribute after a small perturbation of en-
dowments; the set of knife-edge non-contributors

K = {i | �
i

(w
i

+Q

⇤
�i

) = Q

⇤
�i

}
formed of consumers on the verge of becoming contributors; and the set of slack
non-contributors

S = {i | �
i

(w
i

+Q

⇤
�i

) < Q

⇤
�i

}
formed of consumers that would not contribute even after a small perturbation of
endowments. The set of knife-edge non-contributors K is more likely to be empty,
generically. Moreover, for notational simplicity, we also assume that S = 6�. Indeed,
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from the interlacing eigenvalue theorem, it holds that8 �

min

(G)  �

min

(G \ S) < 0
and, therefore, 0 <

�1

�

min

(G)

 �1

�

min

(G\S) . Hence, if the network normality assumption

holds for the network g, it also holds for the network g \ S.
The following result shows that the private provision Nash equilibrium is locally

asymptotically stable under the same assumption required to ensure its uniqueness.
Thus, local stability and uniqueness of equilibrium are closely related.

Theorem 4.1. Assume network normality. Then the unique Nash equilibrium of

the private provision of public goods is locally asymptotically stable.

Proof. To study the local stability of the unique Nash equilibrium, we consider the
Jacobian matrix at q⇤ :

J = �

0

BBBBB@

µ

1

g

11

µ

1

b

1

g

12

. . . µ

1

b

1

g

1n

µ

2

b

2

g

21

µ

2

g

22

. . . µ

2

b

2

g

2n

... . . . . . .

...
... . . . . . .

...
µ

n

b

n

g

n1

µ

n

b

n

g

2n

. . . µ

n

g

nn

1

CCCCCA
,

where b
i

= 1� �

0
i

(w
i

+Q

⇤
�i

). The unique Nash equilibrium is locally asymptotically
stable if all eigenvalues of the Jacobian matrix J have negative real parts. Let B =
diag(b

1

, b

2

, . . . , b

n

) and U = diag(µ
1

, µ

2

, . . . , µ

n

); then it holds that J = �U(I+BG).
Let us consider the matrix K = �J = U(I+BG). In the following lemma, we show
that the eigenvalues of the matrix K are positive real numbers, which implies that
the eigenvalues of the Jacobian matrix J are negative.

Lemma 4.2. Assume network normality. Then the eigenvalues of the matrix K are

positive real numbers.

Proof. First, observe that the matrix

K = U(I +BG) = (UB)(B�1 +G)

8The matrix G \ S is the adjacency matrix of the network g \ S obtained by deleting in the

network g the nodes in S as well as the edges emanating from them.
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is a symmetrizable matrix, as defined by Taussky (1968), since it is the product of
the two symmetric matrices UB and B

�1 + G, one of which (UB) is also positive-
definite. Hence, the matrixK is similar to the symmetric matrix U

1

2 (I+B

1

2

GB

1

2 )U
1

2

since

K = U(I +BG) = (UB)
1

2 [U
1

2 (I +B

1

2

GB

1

2 )U
1

2 ](UB)�
1

2

.

Recall that the symmetric matrix B

1

2

GB

1

2 has real eigenvalues. Moreover, it follows
from Ostrowski (1959) that the eigenvalues of B

1

2

GB

1

2 are given by ✓

i

�

i

, where �

i

is an eigenvalue of G and ✓

i

lies between the smallest and the largest eigenvalues of
B. From the network normality assumption, it follows that for each i = 1, . . . , n,

0 < min
i

{1� �

0
i

(w
i

+Q

⇤
�i

)}  ✓

i

 max
i

{1� �

0
i

(w
i

+Q

⇤
�i

)} < � 1

�

min

(G)
.

Consequently, the eigenvalues of I + B

1

2

GB

1

2 , given by 1 + ✓

i

�

i

, are positive since
for each i = 1, . . . , n, it holds that

0 = 1� 1 < 1 + ✓

i

�

min

(G)  1 + ✓

i

�

i

.

From Ostrowski (1959) again, it follows that the eigenvalues of U
1

2 (I +B

1

2

GB

1

2 )U
1

2

are given by ⌫

i

(1+ ✓

i

�

i

), where 0 < min
i

µ

i

 ⌫

i

 max
i

µ

i

, which, therefore, implies
that 0 < ⌫

i

(1 + ✓

i

�

i

). Since K is similar to U

1

2 (I + B

1

2

GB

1

2 )U
1

2 , it follows that the
eigenvalues of K are also positive.⇤

5. Income redistribution and Bonacich centrality

Ballester, Calvó-Armengol, and Zenou (2006) show that in the case of linear
best-reply functions the Nash equilibrium actions are proportional to the Bonacich
centrality vector. Bonacich centrality, due to Bonacich (1987), is defined for a <

1

�

max

(G)

by the vector

b(G, a) = 1T (I � aG)�1 =
+1X

k=0

a

k1T

G

k

,

where 1 is the all-ones vector. Since the i

th entry of the vector 1T

G

k denotes the
number of walks of length k in G terminating at i, it follows that the i

th entry
b
i

(G, a) of the Bonacich centrality vector is the sum of all walks in G terminating
at i weighted by a to the power of their length. In that sense, Bonacich centrality
is intepreted as a measure of prestige, power, and network influence
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In the following, in the case of nonlinear best-reply functions we show that
equilibrium actions and Bonacich centrality are also closely related. More specif-
ically, we establish that the e↵ect of income redistribution on the aggregate pub-
lic good provision may be determined by a generalization of Bonacich centrality.
Let t = (t

1

, t

2

, . . . , t

n

)T 2 Rn, where t

i

denotes the income transfer made to con-
sumer i. The income transfer may be either a tax (t

i

< 0) or a subsidy (t
i

� 0).
The social planner or network designer is constrained to balance his budget; hence
1 · t =

P
n

i=1

t

i

= 0. Let (q⇤
1

, q

⇤
2

, . . . , q

⇤
n

) (resp. (qt
1

, q

t

2

, . . . , q

t

n

)) denote the unique
Nash equilibrium before income redistribution (resp. after income redistribution)
and Q

⇤ =
P

i

q

⇤
i

(resp. Qt =
P

i

q

t

i

) denote the aggregate public good provision be-
fore income redistribution (resp. after income redistribution). Similar to Bergstrom,
Blume, and Varian (1986), we choose t relatively small in magnitude so that the
set of active contributors remains unchanged after income redistribution. For sim-
plicity, as in our stability analysis, we also assume that all consumers are active
contributors. Hence, it follows that for each consumer i = 1, 2, . . . , n,

q

t

i

� q

⇤
i

= (�
i

(w
i

+ t

i

+Q

t

�i

)�Q

t

�i

)� (�
i

(w
i

+Q

⇤
�i

)�Q

⇤
�i

).

From the mean value theorem it follows that for each i such that t
i

+ Q

t

�i

6= Q

⇤
�i

,
there exists a real number �

i

such that

q

t

i

� q

⇤
i

= �

0
i

(�
i

)(t
i

+Q

t

�i

�Q

⇤
�i

)� (Qt

�i

�Q

⇤
�i

). (5.1)

Define a

i

as follows:

a

i

=

⇢
1� �

0
i

(�
i

) if t
i

+Q

t

�i

6= Q

⇤
�i

,

1� �

0
i

(Q⇤
�i

) otherwise,

and let us consider the diagonal matrix A = diag(a
1

, a

2

, . . . , a

n

).

Proposition 5.1. Assume network normality. Then it holds that

q

t � q

⇤ = (I + AG)�1(I � A)t.

Proof. First, rearranging terms in (5.1), it follows that for each i such that t
i

+Q

t

�i

6=
Q

⇤
�i

, it holds that

q

t

i

� q

⇤
i

+ a

i

X

j2Ni

(qt
j

� q

⇤
j

) = (1� a

i

)t
i

. (5.2)

Moreover, observe that (5.2) also holds trivially for each i such that t
i

+Q

t

�i

= Q

⇤
�i

.
Consequently, it holds that (I + AG)(qt � q

⇤) = (I � A)t. Applying Lemma 4.2 for
B = A and U = I, it follows that the eigenvalues of the matrix I +AG are positive,
which implies that I + AG is invertible. Hence, qt � q

⇤ = (I + AG)�1(I � A)t.⇤
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Proposition 5.1 is useful for the comparative statics analysis of the private provision
of public goods since one can relate the changes in each consumer’s public good pro-
vision to the income redistribution t and the marginal propensities a

i

. In particular,
if one is concerned with the change in the aggregate public good provision, it follows
that

Q

t �Q

⇤ = 1 · (qt � q

⇤) = bdw(G,�A)(I � A)t, (5.3)

where
bdw(G,�A) = 1T (I + AG)�1

.

The vector bdw(G,�A), which is well defined, may be thought of as a “diago-
nally weighted” Bonacich centrality where each node carries a di↵erent weight. The
“diagonally weighted” Bonacich centrality summarizes information concerning each
node’s impact on the aggregate public good provision. Recent contributions of Can-
dogan, Bimpikis, and Ozdaglar (2010) and Golub and Carlos (2010) have proposed
other useful generalizations of Bonacich centrality, which, provided that they are
well defined, characterize equilibria outcomes in some classes of games.

6. Neutrality in networks

In this section, we shall explore the e↵ect of income redistribution on the aggregate
public good provision. For a complete network, the invariance result of Warr (1983)
and Bergstrom, Blume, and Varian (1986), the so-called neutrality result, shows
that income redistributions that preserve the set of contributors will have no e↵ect
on the aggregate public good provision or individual private good consumption.
The following proposition provides a proof of the neutrality result based on network
analysis of the private provision of public goods.

Proposition 6.1. Assume network normality and that g is the complete network.

Then it holds that qt � q

⇤ = t.

Proof. First, observe that, from the network normality assumption, it follows that
both matrices I + AG and I � A are invertible. Moreover, it holds that

(I � A)�1(I + AG) =

0

BBBBB@

1 + a

1

1�a

1

a

1

1�a

1

. . .

a

1

1�a

1

a

2

1�a

2

1 + a

2

1�a

2

. . .

a

2

1�a

2

... . . . . . .

...
... . . . . . .

...
an

1�an

an
1�an

. . . 1 + an
1�an

1

CCCCCA
.
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Let u = ( a

1

1�a

1

,

a

2

1�a

2

, . . . ,

an
1�an

)T ; then it holds that (I � A)�1(I + AG) = I + u1T .
From the Sherman–Morrison formula (see, for example, Maddala (1977, p. 446)), it
follows that

(I + AG)�1(I � A) = (I + u1T )�1 = I � 1

1 +
P

n

i=1

u

i

u1T

.

Hence, it follows from Proposition 5.1 that

q

t � q

⇤ = (I � 1

1 +
P

n

i=1

u

i

u1T )t = t.⇤

What is remarkable in the neutrality result is that, regardless of the form of the
preferences, each consumer adjusts his public good provision by precisely the amount
of the income transfer made to him, provided that the set of contributors remains
unchanged.

Remark 1. An alternative way to establish the invariance of the aggregate public
good provision that avoids calculating the inverse of the matrix (I �A)�1(I +AG)
is to notice that the matrix has constant column sums. This implies that 1T is a
left eigenvector for the matrix (I � A)�1(I + AG) and it holds that

Q

t �Q

⇤ = bdw(G,�A)(I � A)t = 1T (I + AG)�1(I � A)t =
1

1 +
P

n

i=1

ai
1�ai

1 · t = 0.

We now turn our attention to investigate neutrality of income redistribution in
general networks. We will focus only on the first part of the invariance result, that is,
whether the aggregate public good provision is independent of income redistribution.
In principle, provided that it holds, the neutrality result is not special to a particular
form of preferences. Therefore, we can also focus our analysis on preferences yielding
parallel a�ne Engel curves, the so-called Gorman polar form, of which the Cobb-
Douglas preferences are a special case.9

9This also corresponds to the class of games studied by Bramoullé, Kranton, and D’Amours

(2011) where all consumers have the same linear best-reply function. In the literature, the the-

oretical and empirical attraction of preferences of the Gorman polar form is that one can treat

a society of utility-maximizing individuals as a single consumer. Such a concept, albeit di↵erent,

bears a great methodological similarity to the concept of potential games of Monderer and Shapley

(1996).
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In the following, we will introduce the concept of main eigenvalue, due to Cvetković
(1970), from spectral graph theory, to pursue our analysis of the e↵ect of income
redistribution on the aggregate public good provision. An eigenvalue µ

i

of the ad-
jacency matrix G is called a main eigenvalue if it has a (unit) eigenvector u

i

not
orthogonal to 1, that is, 1 · u

i

6= 0. Since for eigenvalues with multiplicity greater
than one we can choose the corresponding eigenvectors in such a way that, at most,
one of them is not orthogonal to 1, without loss of generality, we may also assume
that u

i

2 {v
1

, v

2

, . . . , v

n

}, the orthonormal basis of Rn formed by the eigenvectors
of G. In addition, it also holds that the main eigenvalues of G are distinct and may,
consequently, be ordered µ

1

> µ

2

> . . . > µ

s

. Recall that, by the Perron–Frobenius
Theorem, the principal eigenvector v

1

has positive entries and, hence, µ
1

= �

max

(G).
The set of main eigenvalues M = {µ

1

, µ

2

, . . . , µ

s

} is called the main part of the
spectrum. Cvetković (1970) shows that the number of walks in a network is closely
related to the main part of the spectrum. Indeed, let W

k

= 1T

G

k1 denote the
number of walks of length k in G; then there exist constants c

1

, c

2,

. . . , c

s

such that
for every k, W

k

=
P

s

i=1

c

i

µ

k

i

. The following result provides an easy characterization
of the main part of the spectrum.

Theorem 6.1. (Harary and Schwenk (1979)) The following statements are equiva-

lent for a network g.:

(i) M is the main part of the spectrum.

(ii) M is the minimum set of eigenvalues the span of whose eigenvectors includes

1.

(iii) M is the set of those eigenvalues which have an eigenvector not orthogonal to

1.

The following theorem, based on the concept of main eigenvalues, shows that the
neutrality result of Warr (1983) and Bergstrom, Blume, and Varian (1986) has a
limited scope of application beyond regular networks.
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Theorem 6.2. Assume network normality and that the preferences of consumers

yield parallel a�ne Engel curves, that is, �0
i

(·) = 1�a for each consumer i = 1, . . . , n.

Then the aggregate public good provision is invariant to income redistribution if and

only if the network is regular.

Proof. From the network normality assumption, it follows that the matrix I +
aG has positive eigenvalues and so is invertible. Since G = V DV

T , where D =
diag(�

1

,�

2

, . . . ,�

n

) whose diagonal entries are the eigenvalues of G and V is a matrix
whose columns, v

1

, v

2

, . . . , v

n

, are the corresponding eigenvectors of G that form an
orthonormal basis of Rn, it holds that

(I + aG)�1 = V (I + aD)�1

V

T =
nX

i=1

1

1 + a�

i

v

i

v

T

i

.

Moreover, since {u
1

, u

2

, . . . , u

s

} ⇢ {v
1

, v

2

, . . . , v

n

}, it follows that

b(G,�a) = 1T (I + aG)�1 =
nX

i=1

1 · v
i

1 + a�

i

v

T

i

=
sX

i=1

1 · u
i

1 + aµ

i

u

T

i

. (6.1)

From (5.3), it follows that Q

t � Q = 1 · (qt � q) = (I � a)b(G,�a)t, and, hence,
the aggregate public good provision is invariant to income redistribution if and only
if there exists a real number � such that b(G,�a) = �1T

, which from (6.1) is
equivalent to

b(G,�a) = �1T = �

sX

i=1

1 · u
i

u

T

i

=
sX

i=1

1 · u
i

1 + aµ

i

u

T

i

. (6.2)

Recall that the main eigenvectors u
1

, u

2

, . . . , u

s

are linearly independent. Thus, (6.2)
is equivalent to

� =
1

1 + aµ

1

=
1

1 + aµ

2

= . . . =
1

1 + aµ

s

,

which, since the main eigenvalues µ

1

, µ

2

, . . . , µ

s

are distinct, holds if and only if
s = 1. From (2) in Theorem 6.1, it follows that s = 1 if and only if 1 is an
eigenvector of G, which is equivalent to g being a regular network.⇤
The above result shows that neutrality fails to hold in non-regular networks since
the aggregate provision is a↵ected by income redistribution. It is worth noting that
even in regular but not complete networks, neutrality holds only for the aggregate
public good provision and it may be easily observed that either the private good
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consumption or the public good consumption may have been changed for some
consumers.

Remark 2. To the best of our knowledge, the equality b(G,�a) =
P

s

i=1

1·ui
1+aµi

u

T

i

in (6.1) is the first formulation of Bonacich centrality in terms of the main part of
the spectrum. Note that the non-main eigenvalues do not contribute to Bonacich
centrality since the corresponding eigenvectors are orthogonal to 1.

Remark 3. Often, each eigenvector v

i

of G may determine a measure of relative
importance in the network where the weight of a particular node j corresponds to
the jth entry of the eigenvector v

i

normalized by the sum of the entries of the various
nodes. Such a measure is self-referential since, by the definition of an eigenvector,
the weight of a node is proportional to the sum of the weights of its neighbors.
Consequently, it is not possible for a non-main eigenvalue v

i

6= u

1

, u

2

, . . . , u

s

to
generate a measure of relative importance since the sum

P
n

j=1

v

j

i

= 1 · v
i

= 0 and
the entries of the various nodes eventually cancel each other out.

7. Comparative statics

In view of the limited redistributive neutrality in general networks, it may be
desirable for the social planner or network designer to learn about the pattern of
changes in aggregate public good provision following income redistribution. From
a purely welfare standpoint, it is worth noting that, in spite of the typical subopti-
mality of the Nash equilibrium in the private provision of public goods, an increased
aggregate public good provision in another equilibrium, achieved after income re-
distribution, may not necessarily support a Pareto improvement. Setting aside the
questions of (second-best) optimality, one may argue that the aggregate public good
provision may serve as a benchmark for free-riding or aggregate activity in the net-
work, or may a↵ect the social welfare function of the social planner or network
designer separately.

7.1. Networks with exactly two main eigenvalues (s = 2). This is the first
instance of non-regular networks in which the neutrality result fails to hold. The
simplest examples of networks with just two main eigenvalues are the complete
bipartite networks and the networks obtained from deleting a node in a strongly
regular network. More generally, it holds that a network g and its complement
network g have the same number of main eigenvalues. Let d = (d

1

, d

2

, . . . , d

n

)T

denote the vector of degree centrality, where d

i

is the degree of node i, so that
d = G1.
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Proposition 7.1. Assume network normality and that the preferences of consumers

yield parallel a�ne Engel curves, that is, �0
i

(·) = 1�a for each consumer i = 1, . . . , n.

If network g has exactly two main eigenvalues, then it holds that

Q

t �Q

⇤ =
�a(1� a)

(1 + aµ

1

)(1 + aµ

2

)
d · t.

Proof. From Hagos (2002), it follows that if µ
1

and µ

2

are the two main eigenvalues
of G, then the associated unit eigenvectors are, respectively,

u

1

=
(G� µ

2

I)1p
(µ

1

� µ

2

)1T (G� µ

2

I)1
and u

2

=
(G� µ

1

I)1p
(µ

2

� µ

1

)1T (G� µ

1

I)1
.

Hence, it follows from (5.3) and (6.1) that

Q

t �Q

⇤ = (1� a)(
1 · u

1

1 + aµ

1

u

1

+
1 · u

2

1 + aµ

2

u

2

) · t

=
1� a

(1 + aµ

1

)(1 + aµ

2

)
[(1 + aµ

2

)(1 · u
1

)u
1

+ (1 + aµ

1

)(1 · u
2

)u
2

] · t

=
1� a

(1 + aµ

1

)(1 + aµ

2

)
[(1 + aµ

2

)
(1T (G� µ

2

I)1)(G� µ

2

I)1

(
p
(µ

1

� µ

2

)1T (G� µ

2

I)1)2

+ (1 + aµ

1

)
(1T (G� µ

1

I)1)(G� µ

1

I)1

(
p

(µ
2

� µ

1

)1T (G� µ

1

I)1)2
] · t

=
1� a

(1 + aµ

1

)(1 + aµ

2

)
[
(1 + aµ

2

)(G� µ

2

I)1� (1 + aµ

1

)(G� µ

1

I)1

µ

1

� µ

2

] · t

=
1� a

(1 + aµ

1

)(1 + aµ

2

)
[
a(µ

2

� µ

1

)G1

µ

1

� µ

2

] · t = �a(1� a)

(1 + aµ

1

)(1 + aµ

2

)
d · t.⇤

Hence, for networks with, at most, two main eigenvalues (s = 1, 2), our results gen-
erate precise and clear predictions about the e↵ect of income redistribution on the
aggregate public good provision. Furthermore, it turns out that the aggregate public
good provision is determined by the degree centrality rather than the more sophisti-
cated Bonacich centrality.10 Our results are in line with similar observations in the
economics of networks literature. König, Tessone, and Zenou (2009) present a model

10It is worth noting that degree centrality is a local network measure since only walks of length

1 are considered, unlike Bonacich centrality, which is a global network measure since all walks are
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of dynamic network formation where the degree and Bonacich centrality rankings
coincide and Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2010) emphasize
the importance of the degree centrality as a measure of immediate influence and
local knowledge of the network.

7.2. Asymptotic behavior of Bonacich centrality. It is well known that the
Bonacich centrality becomes asymptotic to the eigenvector centrality, defined by
the principal eigenvector v

1

, when the attenuation factor of the Bonacich centrality
approaches 1

�

max

(G)

from below. In our case, since we deal with the private provision
of public goods which belongs to the general class of games of strategic substitutes,
the attenuation factor of the Bonacich centrality is negative and, thus, the behavior
of Bonacich centrality must be explored at the other end of the spectrum, that is,
in the neighborhood of 1

�

min

(G)

.

In the following, we show that the concept of main eigenvalue is also relevant for
the study of the asymptotic behavior of Bonacich centrality. Indeed, our analysis
of preferences that have parallel a�ne Engel curves reveals that the key issue is
whether the lowest eigenvalue is a main eigenvalue.

Proposition 7.2. If �
min

(G) = µ

s

, then, when a approaches �1

�

min

(G)

from below, the

Bonacich centrality b(G,�a) is asymptotic to the eigenvector u

s

.

Proof. First, observe that from (6.1) it holds that

lim
a" �1

�
min

(G)

(
1 + a�

min(G)

1 · u
s

)b(G,�a) = lim
a" �1

�
min

(G)

(
1 + a�

min(G)

1 · u
s

)
sX

i=1

1 · u
i

1 + aµ

i

u

T

i

= lim
a" �1

�
min

(G)

s�1X

i=1

(1 + a�

min(G)

)(1 · u
i

)

(1 · u
s

)(1 + aµ

i

)
u

T

i

+ u

T

s

= u

T

s

.⇤

Proposition 7.2 may have a useful policy implication for non-regular networks with
�

min

(G) = µ

s

. Indeed, in the case of general preferences having Engel curves close
enough to an a�ne curve with a slope of 1+ 1

�

min

(G)

, it holds by a continuity argument

that the “diagonally weighted” Bonacich centrality bdw(G,�A) is also asymptotic

considered. Moreover, observe that for networks with, at most, two main eigenvalues, neutrality

still holds for income redistributions amongst consumers with the same degree.
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to the eigenvector u

s

. Furthermore, since the eigenvector u

s

is orthogonal to the
positive entries principal eigenvector u

1

, it follows that the eigenvector u
s

has both
positive and negative entries. Thus, income redistributions that follow the sign
patterns of the eigenvector u

s

will have a predictable impact on the aggregate public
good provision. Finally, for non-regular networks with �

min

(G) = µ

s

, the predictions
are less clear and vary according to the vector of Bonacich centrality

b(G,

1

�

min

(G)
) = �

min

(G)
sX

i=1

1 · u
i

�

min

(G)� µ

i

u

T

i

.

8. Conclusion

In this paper, we have established that beyond regular networks, consumers are no
longer able to o↵set income transfers by changes in their public good provisions. Our
result restores, to some extent, the role of income redistribution and tax-financed
government contribution as main channels for policy intervention. In the literature,
various lines of research have been proposed to counter the paradigm of neutrality
of income redistribution. Often, the reason neutrality break down appears to hinge
on the imperfect substitution amongst the various consumers’ provisions (see, for
example, Andreoni (1990)). Our result suggests that neutrality fails in the private
provision of public goods on non-regular networks for similar reasons. However,
unlike the various behavioral and technological explanations in the literature, the
lack of perfect substitution seems to be brought about by the inherent degree het-
erogeneity of non-regular networks.

Finally, most of our results, including existence, uniqueness, and stability of the
Nash equilibrium in the private provision of public goods on networks, are based on
properties of the best-reply functions and, hence, may accommodate the general class
of games of strategic substitutes on networks with nonlinear best-reply functions,
which are the cornerstone in the study of various areas of economics (see Bulow,
Geanakoplos, and Klemperer (1985) and subsequent literature).
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